
 

  

Effect of community agroforestry on 
vegetation resilience to drought in Kenya 

Thesis, MSc Global Sustainability Solutions 

Madeleine Henderson 
September 2023 

Global Systems Institute, University of Exeter  

      



1 
 

I certify that this dissertation is entirely my own work and no part of it has been submitted for a degree 

or other qualification in this or another institution. I also certify that I have not collected data nor shared 

data with another candidate at Exeter University or elsewhere without specific authorization. 

 

 

Acknowledgements 
I am very grateful to my supervisor, Dr. Josh Buxton, for his excellent support throughout the project, as 

well as Mark, who very graciously served as my personal IT consultant.  

  



2 
 

Contents 
Acknowledgements............................................................................................................................1 

Table of Figures .................................................................................................................................3 

List of Tables ......................................................................................................................................4 

Abstract .............................................................................................................................................5 

1. Introduction ..........................................................................................................................6 

2. Literature Review ..................................................................................................................7 

Kenya and drought ........................................................................................................................... 7 

Agroforestry ..................................................................................................................................... 9 

Tipping points and resilience ......................................................................................................... 10 

The theory behind recovery rate and resilience ............................................................... 12 

Remote monitoring of ecosystem resilience ................................................................................. 13 

Global decline of resilience ............................................................................................................ 15 

Resilience and human land management...................................................................................... 15 

3. Research Questions ............................................................................................................. 16 

4. Methodology ....................................................................................................................... 17 

Study area, timeframe, and drought indicators ............................................................................ 17 

Data acquisition ............................................................................................................................. 20 

Data preprocessing ........................................................................................................................ 21 

Recovery rate estimation ............................................................................................................... 24 

Comparisons .................................................................................................................................. 25 

5. Results ................................................................................................................................. 26 

RQ1: Can resilience be estimated using recovery rates? ............................................................... 26 

RQ2: Effect of TIST on recovery rates ............................................................................................ 30 

RQ3: Recovery from subsequent droughts .................................................................................... 31 

RQ4: TIST spillover effects ............................................................................................................. 33 

6. Discussion ............................................................................................................................ 34 

RQ1: Can resilience be estimated using recovery rates? ............................................................... 34 

RQ2: Effect of TIST on recovery rates ............................................................................................ 35 

RQ3: Recovery from subsequent droughts .................................................................................... 38 

RQ4: TIST spillover effects ............................................................................................................. 38 

Limitations and Future Work ......................................................................................................... 39 



3 
 

7. Conclusion ........................................................................................................................... 42 

8. Code Availability .................................................................................................................. 43 

9. Appendix ............................................................................................................................. 44 

10. References ........................................................................................................................... 56 

 

Table of Figures 
Figure 1: A system diagram of the interaction of agroforestry with drought in Kenya .............................. 10 

Figure 2: Resilience as a swifter recovery from perturbations ................................................................... 11 

Figure 3: System U(x) .................................................................................................................................. 12 

Figure 4: Approximation of U(x) around x* as a quadratic ......................................................................... 13 

Figure 5: An approximation of x(t) after a perturbation at t = 0 as an exponential recovery with rate λ. . 13 

Figure 6: (Left) Relevant counties and TIST groves (in purple) within those counties. (Top right) ............ 17 

Figure 7: Ecoregions (right) and landcover (left) of the study area. ........................................................... 18 

Figure 8 : Example drought classification ................................................................................................... 19 

Figure 9: A subset of the drought categorizations ...................................................................................... 20 

Figure 10: Data preparation process. ......................................................................................................... 21 

Figure 11: The percentage of months missing for each pixel in the study area. ........................................ 22 

Figure 12: Example of gap filling. ................................................................................................................ 23 

Figure 13: Example of STL decomposition. ................................................................................................. 23 

Figure 14: Recovery rate calculation process. ............................................................................................ 24 

Figure 15: Example fitted recovery rate. .................................................................................................... 25 

Figure 16 : Recovery rates for the recovery at month 59 across the four counties. .................................. 27 

Figure 17 – Recovery rates for the recovery at month 77 across the four counties. ................................. 28 

Figure 18a: Meru County at boxed location. .............................................................................................. 29 

Figure 19a: Tharaka County at triangle location. ........................................................................................ 29 

Figure 20 : Spearman’s rho for recovery rates and other characteristics in Tharaka. All p < 0.001. .......... 30 

Figure 21: Spatially plotted results for the percent change in resilience over time. .................................. 32 

Figure 22: Median recovery rates from 59 vs. distance from TIST. ............................................................ 33 

Figure 23: Median recovery rates from recovery 77 for each county vs. distance to nearest TIST pixel. .. 33 

Figure 24: Percent change in recovery rate from recovery 59 to 77, median over distance from nearest 

TIST grove. ...................................................................................................................................... 34 

Figure 25: Distribution of estimated recovery rates for recovery 77. ........................................................ 36 

Figure 26: These example pixels from Nyeri County show some seasonal cycle still present within the 

residual........................................................................................................................................... 36 

Figure 27: Characteristics associated with improved recovery rates and recovery rates plotted vs. 

distance from closest TIST plot. ..................................................................................................... 39 

Figure 28: Sensitivity to missing data. ........................................................................................................ 40 

Figure 29: Example of attempted gap filling with Savitzy-Golay reconstruction ....................................... 46 

https://d.docs.live.net/f76f956f1a0efc09/Documents/2022-23%20Exeter/Diss/Diss_Draft1.docx#_Toc144482933
https://d.docs.live.net/f76f956f1a0efc09/Documents/2022-23%20Exeter/Diss/Diss_Draft1.docx#_Toc144482938
https://d.docs.live.net/f76f956f1a0efc09/Documents/2022-23%20Exeter/Diss/Diss_Draft1.docx#_Toc144482945
https://d.docs.live.net/f76f956f1a0efc09/Documents/2022-23%20Exeter/Diss/Diss_Draft1.docx#_Toc144482947
https://d.docs.live.net/f76f956f1a0efc09/Documents/2022-23%20Exeter/Diss/Diss_Draft1.docx#_Toc144482951
https://d.docs.live.net/f76f956f1a0efc09/Documents/2022-23%20Exeter/Diss/Diss_Draft1.docx#_Toc144482951


4 
 

Figure 30: The R2 value for the recovery rates vs. the difference between the local minimum and the 

(mean – one standard deviation)................................................................................................... 46 

Figure 31: The R2 value for the recovery rates vs. the difference between the local minimum and the 

(mean – two standard deviations). ................................................................................................ 46 

Figure 32: Histograms of fitted recovery rate for a sample of data (n = 5000, Tharaka county) for 

different initial guesses of a, r, and c. ............................................................................................ 47 

Figure 33: Distance from TIST groves in meters. ........................................................................................ 48 

Figure 34: Recovery rates and R-squared values for Recovery 59.............................................................. 50 

Figure 35: Recovery rates and R-squared values for Recovery 77.............................................................. 50 

Figure 36: Mean NDVI in each county for TIST, neighbors, and other pixels. ............................................ 51 

Figure 37: Spearman’s rank correlations for recoveries and other characteristics across counties. ......... 52 

Figure 38a: Recovery rates for 59 by landcover type. ................................................................................ 52 

Figure 39a: Recovery rates for 59 by ecoregion. ........................................................................................ 53 

Figure 40 : Characteristics of each landcover type with medians marked. ................................................ 54 

 

List of Tables 
Table 1: Median recovery rates compared by county, recovery and landcover classification. ................. 31 

Table 2: Median percent change in recovery rate from Recovery 59 to Recovery 77, .............................. 32 

Table 3: Drought classifications from the NDMA. ...................................................................................... 44 

Table 4: Recovery calculation success rates. .............................................................................................. 49 

Table 5: Sample size corresponding to recovery rates compared by county, recovery and landcover 

classification. .............................................................................................................................. 54 

Table 6: Sample size for percent change in recovery rate from Recovery 59 to Recovery 77, .................. 55 

  



5 
 

Abstract 
Resilience, or the ability to quickly recover from shocks, is a critical quality for natural and social systems 

in the face of climate change which is increasing the frequency and severity of natural disturbances such 

as drought. Smallholder farmers are particularly exposed to the risks of climate change. Thus, identifying 

resilience-building practices and quantifying their effects can guide management in agro-ecological 

systems. Community-driven tree planting for carbon credits is a growing program in the Mount Kenya 

region of Kenya. Tree planting and agroforestry are known to have ecological benefits that improve soil 

quality, microclimate, and water retention, as well as economic benefits to farmers. To evaluate the 

benefits of these practices on resilience to drought, remotely sensed vegetation greenness (NDVI) was 

used to assess the state of the agro-ecological systems around Mt. Kenya during and after droughts 

within the last decade. Droughts were identified by the Kenyan government based on surveys of 

community members and remotely sensed data. Resilience was estimated using the rate term of a fit 

exponential curve to the vegetation recovery after a drought. The resilience estimation method was 

successful and found proven patterns of resilience with precipitation and landcover. Planted tree groves 

and immediate neighboring pixels have higher resilience to drought events than comparable pixels in 

the area, and they see less decrease in resilience to subsequent drought events than other pixels. 

Agroforestry programs are thus an important tool for building resilience to drought for smallholder 

farmers in Kenya who are increasingly threatened by climate change. 
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1. Introduction  
Agriculture is a major driver of the environmental crisis on multiple planetary boundaries (Beare et al., 

2017), but it is also one of the sectors critical to human survival that is most impacted by climate 

change, especially in Africa. Warming is already reducing crop yields and productivity on the continent, 

which will worsen with further warming (Trisos et al., 2023). Smallholder farmers are vulnerable to 

climate change as they are dependent on weather conditions to feed and support themselves 

(Mendelsohn, 2009; Lasco et al., 2014) especially in Africa which depends largely on rain-fed agriculture 

(Ochieng et al., 2016). Natural disasters, especially drought, can push people further into poverty 

(Sherwood, 2013), but climate change adaptation can both reduce poverty and vulnerability to climate 

change (Eriksen and O’Brien, 2007). Smallholder farmers can make adaptation decisions such as what to 

grow and how to grow it (Mendelsohn, 2009). Farming techniques that decrease environmental 

degradation and increase resilience to climate change are thus key to mitigation and adaptation, 

especially for smallholder farmers in developing countries. 

The International Small Group and Tree Planting Program (TIST) is a program that works towards both 

mitigation and adaptation in an effort to sequester carbon, improve agricultural resilience, and improve 

the livelihoods of smallholder farmers through tree planting and agroforestry in Kenya, India, Tanzania, 

and Uganda (TIST, 2023). Agroforestry is the integration of trees or shrubs with crops or livestock as 

windbreaks, buffers to water, hedges, or interspersal with crops or pasture (Pantera et al., 2021). TIST is 

locally driven: farmers determine how, where, and what types of trees to plant, though the trees are 

usually planted on degraded or unused land. Farmers are organized into small groups of 6-12 and 

clusters of 200-400 which create local leadership development opportunities, educate participants on 

conservation farming techniques, and mutually support members (Oppenheimer, 2011; Masiga et al., 

2012; TIST, 2023). Farmers have a contract to maintain the groves for 30 years in order to receive 

payments from the sale of credits on the voluntary carbon market. TIST facilitates verification and sale 

of the high-quality carbon credits, and 70% of profits are returned to the farmers. TIST, operating since 

1999, now involves more than 180,000 farmers and 23 million trees planted (Masiga et al., 2012; TIST, 

2023). Besides providing additional income, the groves benefit the farmers via fuelwood, livestock 

fodder, fruit, windbreaks, improved soil quality, and erosion control, increasing their farm’s resilience to 

the changing climate (Jose, 2009; Oppenheimer, 2011; Lasco et al., 2014).  

TIST exhibits characteristics of a potential social positive tipping point (Marshall, 2022); however, effects 

on the ecosystem are mostly unquantified. There is some evidence that TIST improves the ecosystem 

beyond the boundaries of its farms (Buxton et al., 2021), even though in the last 40 years agriculture has 

rapidly expanded and intensified in Kenya, leading to land degradation (Eckert et al., 2017). While local 

farmers already perceive that agroforestry is a beneficial practice for drought resilience (Quandt et al., 

2017), this has not been quantified. As precipitation extremes (both drought and floods) impact food 

and economic security in Kenya and are already worsening with climate change (Kimutai et al., 2023; 

Trisos et al., 2023), further evidence of TIST’s benefits may promote expansion and improve both farmer 

livelihoods and the local environment.  
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Tipping points exist in systems with non-linearity and strong reinforcing feedback loops where a small 

change can trigger a large shift in system state (Lenton, 2020), which are well established in several 

climate and ecological systems (Lenton et al., 2008). Resilience is the ability of the system to return to its 

previous state after disturbances (Pimm, 1984). A more resilient system recovers more quickly from 

disruption due to strong stabilizing feedbacks, but as a system approaches a tipping point, it exhibits 

critical slowing down (CSD) and recovers more slowly (Wissel, 1984). Because resilience is difficult to 

quantify directly, the observed recovery rate from disturbances can be used to measure resilience (Van 

Nes and Scheffer, 2007).  

Remote sensing has been used to monitor terrestrial ecosystem resilience via measures of vegetation 

productivity and biomass which approximate the health of the ecosystem (Verbesselt et al., 2016; 

Boulton et al., 2022; Lenton et al., 2022). Resilience of natural ecosystems has been estimated using the 

recovery rate of vegetation productivity observed by satellites after disturbances (van Belzen et al., 

2017; Buxton et al., 2022; Smith et al., 2022). As ecosystems globally exhibit decreased resilience due to 

the cumulative impacts of human activity (Armstrong McKay et al., 2022; Boulton et al., 2022; Smith et 

al., 2022), the ability to monitor “invisible” qualities like resilience and quickly determine intervention 

efficacy is critical, creating self-aware feedbacks to help maintain the biosphere (Lenton and Latour, 

2018). Quantifying the effects of human land management on agro-ecological resilience with remote 

sensing is relatively novel, though there are some previous examples in the literature (McKenna et al., 

2018; K. J. Lees et al., 2021; von Keyserlingk et al., 2021; Jing et al., 2023). The TIST agroforestry program 

may improve the ability of the agro-ecosystem to recover more quickly from droughts which have been 

severely affecting the region in recent years (Gebremeskel Haile et al., 2019; Nash, 2022); examining the 

effects of human intervention on resilience in an agro-ecological system will contribute to this 

knowledge base.  

Therefore, this study will use remotely sensed vegetation data (NDVI) from the last decade as a proxy 

for the health of agro-ecological systems around Mt. Kenya. By estimating the recovery rate after 

drought events, the resilience of TIST farms to drought will be measured, and TIST farms will be 

compared with similar areas. This will help quantify and potentially support the experiential 

understanding of local farmers of the TIST program’s practices as drought resilience tools. Section 2 

reviews the relevant literature on resilience, remote sensing, drought, and agroforestry, leading to 

research questions in Section 3; Section 4 describes and rationalizes the methodology; Section 5 

describes results; Section 6 discusses results, limitations, and potential for future study; and Section 7 

provides conclusions.  

2. Literature Review 

Kenya and drought 
Droughts are one of the most detrimental natural hazards today because of their large spatial and 

temporal impact; unlike storms or earthquakes, droughts are not constrained to physical destruction in 

a particular area. Instead, they affect agricultural lands and have very high economic and social costs 
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beyond the impacted drought area (Mishra and Singh, 2010; Sherwood, 2013). As summarized by 

Mishra and Singh (2010), droughts can be defined in different ways, which creates difficulty in locating 

the exact start and end points. A meteorological drought is measured by the lack of precipitation over 

time, which occurs in the short term. A hydrological drought is defined by the deficit of surface and 

subsurface water. Further, an agricultural drought is measured by the failure of crops which is 

influenced not only by precipitation and soil moisture but also temperature and the water needs of 

crops (Liu et al., 2016). Finally, socio-economic droughts are a combination of all of the above as they 

are defined by the deficit of available water supply (influenced by meteorological and hydrological 

conditions) to the demand (controlled by social and agricultural use of water) (Hayes et al., 2011). The 

temporal scale of droughts ranges from months to years (Mishra and Singh, 2010).  

Vegetation responds to drought on different timescales depending on the biome; semi-arid biomes such 

as those found in northern Kenya generally respond slowly to water deficits potentially due to 

acclimation to highly variable water availability, while the more humid biomes such as the East African 

montane forests found around Mount Kenya respond more quickly to water deficit (Vicente-Serrano et 

al., 2013). Plant species also have individually different responses to water stress. In the short term, they 

may minimize water loss and protect against dehydration, while in the long term they may shorten their 

lifecycle or optimize water use through acclimation responses (Chaves et al., 2003). Vegetation also 

retains a water memory, where current productivity is influenced by the water availability of the past 

several months or years (Liu et al., 2018; Gao et al., 2020). 

Kenya has bimodal rainfall seasons with short rains from October to December and long rains from 

March to May (NDMA, 2023). In the last century, droughts in East Africa resulting in food security 

problems have occurred nearly every decade with increasing frequency and severity (Nicholson, 2017; 

Gebremeskel Haile et al., 2020). Droughts lead to increased migration, displacement, conflict, higher 

prices of necessities, famine, disease, and death (Von Uexkull et al., 2016).  

The current drought in northern Kenya since 2020 has put more than 4 million people into critical food 

insecurity (NDMA, 2022); this drought was made 100 times more likely by climate change (Kimutai et al., 

2023). The main causes of changing drought patterns are climate variabilities (such as sea surface 

temperatures, El Niño, and land-atmosphere feedbacks) and anthropogenic effects (such as climate 

warming, aerosol pollution, urbanization, deforestation, and water usage) (Uhe et al., 2018; 

Gebremeskel Haile et al., 2020). The current drought, beyond the lack of precipitation creating a 

meteorological drought, has more severe agricultural and socio-economic impacts because of higher 

temperatures caused by global warming (Kimutai et al., 2023). Beyond climate change, humans can 

trigger droughts by interfering with the ability of the land to capture and hold water through over-

exploitation of land like deforestation, extractive farming, excessive water withdrawal, or contributing 

to erosion (Mishra and Singh, 2010). Land use change can also lead to desertification which causes a 

destabilizing chain of feedbacks that reduce the water holding capacity of land and change the 

atmosphere-vegetation interactions, thereby potentially changing rainfall patterns (Miralles et al., 

2019). As the climate warms, East Africa will likely experience more frequent and intense precipitation 

events and droughts (Trisos et al., 2023). Thus, drought is a highly relevant environmental perturbance 

to investigate the effects of and strategies to increase resilience to.  
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Agroforestry 
Agriculture has been expanding and intensifying in the Mount Kenya region in the last thirty years. The 

area of natural land has decreased from 75% to 45% due to conversion to agriculture (Eckert et al., 

2017). Kenya experienced browning trends, or a general decrease in vegetation productivity, in 21% of 

the country and greening in only 9% of the country between 1992 and 2015 and a decrease in forest 

area (Gichenje and Godinho, 2018). The pressures of intensifying agriculture for livelihoods and a 

growing population are putting increased pressure on land and water resources, which increases the 

possibilities of droughts and contributes to climate change. Forest and bushland conversion to cropland 

in East Africa increases the land surface temperature significantly, as well as decreasing carbon stocks 

(Abera et al., 2018, 2020; Pellikka et al., 2018). This contributes to desertification feedbacks (Miralles et 

al., 2019). Methods of farming that increase farmer resilience to drought while decreasing 

environmental impacts are necessary.  

Agroforestry, the integration of trees into crop or livestock farming, is a nature-based solution that can 

help farmers both economically and environmentally. Smallholder farmers are very dependent on 

ecosystem conditions as their farm both feeds and supports them (Mendelsohn, 2009). Trees can 

diversify income, provide food sources such as fruit or nuts, wood for energy, and fodder for livestock 

(Lasco et al., 2014). Environmentally, agroforestry can cool the farm’s microclimate, provide protection 

from sun and wind, enhance water storage in the soil, improve soil productivity, improve nutrient 

availability, increase soil microbe resilience to water stress, and control erosion. These properties can 

both decrease the degradation of land by agriculture as well as improve agricultural productivity (Jose, 

2009; Rivest et al., 2013; Dollinger and Jose, 2018). The ecosystem services of agroforestry thus 

ameliorate some anthropogenic mechanisms of drought. Surveys and interviews with households in 

Kenya (Isiolo County) showed that agroforestry was perceived as both directly and indirectly building 

livelihood resilience to drought and floods. Fruits like bananas, mango, and papaya are common for food 

and income, and ecosystem services like shade and soil conservation are recognized as top benefits 

(Quandt et al., 2017); indeed, the most common trees planted in TIST groves include avocado and 

mango (Masiga et al., 2012). Studies in other African communities have also identified the practice as 

increasing farmers’ resilience to climate change (Nyong et al., 2020). TIST quantifies these additional 

benefits aside from carbon credit income as $8 (USD) per tree (TIST, 2023). In total, agroforestry can be 

beneficial both directly to farmer quality of life as well as indirectly by improving the environment and 

potentially increasing resilience to impacts like drought and flood (Figure 1). Agroforestry is not a one-

size-fits-all solution to environmental degradation and climate change: the benefits depend on how and 

where trees are planted and what the prior use of the land was along with stakeholder engagement 

(Holl and Brancalion, 2020); however, as the practices of TIST farmers are locally driven and determined 

via the small group structure (Masiga et al., 2012), that prevents many of these issues.  
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Figure 1: A system diagram of the interaction of agroforestry with drought in Kenya adapted from Quandt et al. (2017). 
Orange indicates a drought impact, while green indicates an agroforestry benefit. Agroforestry improves resilience to 
drought both environmentally and economically for smallholder farmers.  

TIST agroforestry is quantifiably providing on-farm economic benefits as mentioned. There is some 

quantitative evidence as well that TIST influences the ecosystem beyond the farm: it greens the 

neighboring landscapes as well as the farm itself. Agroforestry has an observable effect that could be 

the result of tree microclimate, decreased pressure on local forests, or increased environmental 

awareness by farmers (Buxton et al., 2021). Other ecological benefits of the program have yet to be 

quantified. 

Tipping points and resilience 
Tipping points are a sudden, nonlinear shift in the state of the system caused by only a small change in a 

system variable and accelerated by strong amplifying (positive) feedbacks (Lenton et al., 2008). Tipping 

points have been shown to exist in many natural systems such as Amazon forest dieback, Arctic summer 

sea ice melt, populations of microbes, or human blood pressure (Lenton et al., 2008; Scheffer et al., 

2018; Boulton et al., 2022). Early warning signals (EWS) of tipping points are based on the detection of 

critical slowing down (CSD) of the system as a threshold is approached (Wissel, 1984). As a system is 

forced by external perturbations, the stablizing feedback loops within the system act to return it to its 

stable state. If the feedbacks are strong, the system is quickly returned to its equilibrium state, but as 

the stablizing feedbacks are weakened and the system approaches a tipping point, the system reacts 

more slowly to forcing, exhibiting CSD (Figure 2) (Van Nes and Scheffer, 2007). This ability of a system to 

recover more quickly from disturbance due to its strong stablizing feedbacks is called resilience (Pimm, 

1984).  
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Figure 2: Resilience as a swifter recovery from perturbations (figure from Van Nes and Scheffer, 2007) 

The term resilience is used colloquially and defined in multiple ways in the literature in relation to 

system dynamics and ecology (Hodgson et al., 2015; Ingrisch and Bahn, 2018). Holling (1973) defined it 

as a measure of the persistence of systems, or how well they absorb change without changing the 

relationships and interactions within the system, which is sometimes called ecosystem resilience or 

resistance. Resilience, sometimes known as recovery (Hodgson et al., 2015) or engineering resilience 

(Holling, 1996), is defined as the ability of the system to recover to its previous state after disturbances 

(Pimm, 1984). Here, the recovery definition will be used.  

Resilience is difficult to measure in practice, but measuring the recovery rate from disturbances can 

represent the total system resilience and serve as EWS to tipping points (Van Nes and Scheffer, 2007). 

Systems will recover exponentially towards equilibrium after perturbation, and as systems lose 

resilience the recovery rate will tend to zero (Drake and Griffen, 2010). Recovery rates are best 

estimated by fitting an exponential curve to the recovery data and comparing the rate term (Lenton et 

al., 2022). Their potential as an EWS was empirically shown by Veraart et al. (2011) in a controlled 

experiment on cyanobacteria where the recovery rate from regular perturbations was measured while 

increasing the stress on the system to the point of collapse. The recovery rate slowed as the bacteria 

colony approached its tipping point. Though the recovery rate estimation requires relatively high 

sampling frequency and a definition of the equilibrium state of the system, it is seen as a robust and 

direct method of measurement that is independent of the size of the perturbation up to a point (Lenton 

et al., 2022). Some studies use the recovery time as a measure of resilience (Schwalm et al., 2017; K.J. 

Lees et al., 2021); however, this only is comparable between disturbances of similar magnitude, and in a 

real-world ecosystem, disturbances of the same severity may not occur frequently enough to be 

compared (Lenton et al., 2022). The slope of the recovery has also been used, such as the ratio of the 

peak disturbance response to the recovery time (White et al., 2020), but this ignores the exponential 

nature of the recovery and requires measuring the magnitude of the disturbance by the system 

response to it (Lenton et al., 2022).  
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Autocorrelation with a time lag of one unit (AC1) is also widely used as a measure of system resilience 

and as an EWS because a system that recovers more slowly will have more influence of previous 

timesteps on the current timestep (Scheffer et al., 2009). An advantage of AC1 is the equilibrium or 

recovered state of the system does not need to be defined, though it requires relatively long time series 

to generate (Lenton et al., 2022); however, it measures the general state of resilience rather than the 

resilience or recovery from specific perturbances. As another option, the ecosystem state can be 

autoregressively modelled as a linear combination of factors such as environmental variables, noise, and 

the system state at a lagged timestep, where the coefficient of the lagged system state is used as a 

resilience measure (where higher coefficient means slower recovery) (De Keersmaecker et al., 2015).  

The theory behind recovery rate and resilience 
The theory behind recovery rate, autocorrelation, and their relation to resilience is described in Scheffer 

et al. (2009) and Lenton et al. (2022). A dynamical system with a state variable x that tends to recover 

from perturbations may be in a basin of attraction at x* (Figure 3).  

 

Figure 3: System U(x) 

The system state can be described by a function U(x) with, for simplicity, additive noise η with standard 

deviation σ. Thus, the dynamics over time of the system are represented by the derivative:  

(Eq. 1) 
d𝑥(𝑡)

d𝑡
=  −𝑈′(𝑥(𝑡)) +  𝜂(𝑡)    

Around the basin of attraction x*, the function U can be approximated as a quadratic (Figure 4) such 

that for λ < 0 (Scheffer et al., 2009):  

(Eq. 2) 𝑈(𝑥) ~ −
𝜆

2
𝑥2  
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Figure 4: Approximation of U(x) around x* as a quadratic  with various values of λ representing the steepness of the slope 
back to the bottom of the basin.  

Therefore, the recovery rate of the system to x* after a perturbation is λ, which provides a measure of 

the stabilizing negative feedback. The more negative λ is, the faster the system recovers and the more 

resilient it is. A recovery rate approaching 0 indicates a less resilient system (Scheffer et al., 2009; Lenton 

et al., 2022). The recovery over time after a perturbation to x0 at t=0 (Figure 5) can be approximated as 

(Smith et al., 2022): 

(Eq. 3)  𝑥(𝑡)~ 𝑥0𝑒𝜆𝑡  

 

Figure 5: An approximation of x(t) after a perturbation at t = 0 as an exponential recovery with rate λ. 

This approximation can be used to determine λ by fitting an exponential curve to observed data. 

Discretizing the dynamics of the system into timesteps allows the autocorrelation function α at lag n to 

be found analytically as:  

(Eq. 4)  𝛼(𝑛) =  𝑒𝑛𝜆Δ𝑡 

When λ approaches zero as resilience decreases, α(1) (AC1) will increase towards 1.  

Remote monitoring of ecosystem resilience  
Remote monitoring has become an important tool for monitoring vegetation and ecosystems. Passive 

satellite sensors measure the intensity of electromagnetic waves that are reflected by the surface in 

different realms of the wavelength spectrum. Chlorophyll has a distinct spectral reflectance curve that 
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allows it to be easily quantified with measures of red and near infrared reflectance. High chlorophyll 

concentrations absorb more red wavelengths, and near infrared (NIR) wavelengths are reflected due to 

the structure of leaves (Petropoulos and Kalaitzidis, 2012). Thus, the difference between the red and NIR 

reflectance can be used as an index of the vegetation presence and productivity in a region (Myneni et 

al., 1995; Silleos et al., 2006). One of the most commonly used indices is Normalized Difference 

Vegetation Index (NDVI), which is defined as NDVI = (NIR – Red) / (NIR + Red) reflectance (Petropoulos 

and Kalaitzidis, 2012). NDVI has been proven to strongly correlate with biomass, vegetation productivity, 

and vegetation response to precipitation and drought (Liu et al., 1994; Wang et al., 2004; Wessels et al., 

2006); thus it can be used as a proxy measurement for the overall vegetation health. It is not without 

limitations: NDVI is distorted by clouds, water, and bare soil (Huang et al., 2021; Zeng et al., 2022). It is 

also affected by sub-pixel mixing (Pettorelli et al., 2005), saturation at high greenness such as dense 

forests (Huang et al., 2021), and will be dominated by the tallest and most abundant species in the 

community (Cavender-Bares et al., 2022). Most importantly, a single measurement via satellite is not a 

comprehensive measure of the health of an ecosystem and cannot completely replace ground 

observations (Cavender-Bares et al., 2022). Nevertheless, measurements of vegetation health via 

remote sensing have allowed relatively inexpensive and widespread data collection through time and 

space of terrestrial ecosystems that represent the health of the ecosystem.   

Remote monitoring of ecosystems has used vegetation indices through time and space to estimate 

resilience and look for EWS of tipping points. AC1 of NDVI and vegetation optical depth were used to 

examine tropical forest resilience against precipitation and temperature by comparing autocorrelations 

against annual precipitation and temperature. Evidence for a tipping point triggered by drought and 

heat was found by the rising AC1, indicating loss of resilience, against lower precipitation (Verbesselt et 

al., 2016). Ground observations of forest mortality in the US were compared with AC1 and measures of 

drought, and AC1 of NDVI was the best indicator of real forest resilience (Tai et al., 2023). Resilience via 

AC1 was shown to be an earlier warning signal of forest mortality than the decline of NDVI below a 

certain threshold (Liu et al., 2019). Resilience estimation using vegetation indices from remote sensing is 

well established, especially using temporal autocorrelation.  

There are studies using more linear methods of resilience measurement like the slope of recovery, or 

the ratio of disturbance magnitude to recovery time, such as quantifying the ecosystem stability of 

specific regions (e.g., Ireland by White et al. (2020), or Louisiana wetlands by Suir et al. (2020)). These 

studies are less relevant because the use of recovery time or slope ignores the exponential nature of 

recovery and thus can provide distorted analyses.   

Few studies directly quantify the exponential recovery rate to look at vegetation resilience. Smith et al. 

(2022) analyzed resilience globally with NDVI and vegetation optical depth using both the recovery rate 

and AC1. They fit recovery rates using abrupt transitions in the data itself to identify perturbances such 

as drought or heatwaves. They also computed AC1 for the same data and found that the recovery rates 

had the expected exponential relationship to AC1, proving the theoretical expectation. On a local 

ecosystem level, van Belzen et al. (2017) analyzed aerial images of tidal marshes to determine their 

resilience to inundation time. By plotting the recovery times to regrow vegetation versus the local 

inundation time and then fitting an exponential model, they estimated the recovery rate for each site 
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and determined that longer tidal inundation caused decreased resilience, critical slowing down, and 

eventually a tipping point. While they also analyzed AC1 as a less data-intensive method, they found 

that direct measurement of the resilience via recovery rate was more effective. As a final example, 

Buxton et al. (2022) measured the rate of decay of NDVI from the “beneficial perturbation” of the rainy 

season in the arid Sahel as a resilience metric. Direct estimation of the resilience via recovery rate, as 

the most robust method of resilience measurement, will be utilized here. These examples of direct 

estimation of recovery rate will form the basis of the methodology explained in Section 4. 

Global decline of resilience 
The ability to remotely monitor resilience has shown that terrestrial ecosystems globally are exhibiting 

reduced resilience due to pressures such as climate change and deforestation. Forzieri et al. (2022) 

found that most forests are declining in resilience except for boreal forests, which are likely benefiting 

from warming and CO2 fertilization. The Amazon rainforest has lost resilience in the last 20 years and is 

less resilient in areas that are closer to human activity. This is due to positive feedback from local fires 

amplifying drought and forest loss, as well as deforestation and degradation, which reduces the 

vegetation-atmosphere feedbacks that promote rainfall (Boulton et al., 2022). 

In particular, the effects of climate change on water availability are critical to vegetation and ecosystem 

resilience, and resilience to drought is commonly studied. Smith and Boers (2023) analyzed vegetation 

resilience across land cover types, using both directly estimated recovery rate and AC1 (using the same 

methodology as Smith et al. (2022)), and compared them with the aridity index of the region, the intra-

year seasonality of precipitation, and the inter-year variability of precipitation. They found that 

landscapes with a water surplus rather than deficit had the fastest recovery rates. Additionally, high 

inter-annual variability, i.e., drought, was correlated with lower resilience across all land cover types 

(Smith and Boers, 2023). Multiple natural factors can modulate vegetation resilience to drought. As 

Anderegg et al. (2020) found, subsequent droughts are usually more detrimental to tree health than 

initial droughts, though it depends on the species and its ecosystem. Schwalm et al. (2017) analyzed 

global resilience to drought using recovery time rather than rate but did find that the post-drought 

precipitation and temperatures strongly affected recovery time. De Keersmaecker et al. (2015) analyzed 

global resilience to short-term climate anomalies by autoregressively modelling the current NDVI as a 

linear combination of the temperature anomaly, drought index, and the previous NDVI and using the 

coefficient of the previous NDVI as a measure of resilience. They found that semi-arid areas had low 

resilience to drought and that the amount of tree cover versus bare soil cover affected the resilience. As 

more variable precipitation and more frequent and intense droughts occur because of climate change 

(Trisos et al., 2023), resilience of vegetation may further deteriorate globally. Measuring current 

ecosystem resilience and historical patterns to detect potential tipping points is critical for adaptation 

strategies and potential human management (or reduction thereof) of land (Dakos et al., 2015).  

Resilience and human land management  
While resilience monitoring of natural ecosystems and remote monitoring of managed natural systems 

have recently become more common (Thackway et al., 2013), the combination of remote sensing to 

monitor agro-ecological system resilience is relatively novel. von Keyserlingk et al. (2021) studied the 
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effect of grazing on Mediterranean rangeland using NDVI and the slope of the NDVI trend after a 

detected disturbance as a proxy for recovery rate. They found that areas with high grazing had a slower 

recovery after drought, suggesting that decreasing grazing intensity is a necessary intervention for 

drought resilience in the region. Lees et al. (2021) analyzed the recovery time of peatlands in the UK 

after management such as cutting or burning was performed using a metric derived from NDVI. The 

recovery times were affected not only by the management frequency but by other factors such as 

grazing, forestry, rewetting, and weather conditions. Remote monitoring of resilience to fire using the 

return rate has been studied in the Mediterranean for making forest management decisions after 

wildfires (Fernandez-Manso et al., 2016). In Australia, the recovery of NDVI after experimental burns 

was examined in rehabilitated mine sites to determine whether the restored ecosystems were resilient 

to fire, providing potential evidence for improved restoration practices (McKenna et al., 2018). In 

agriculture, New Zealand is considering the use of remote sensing to assess the effectiveness of 

regenerative agriculture on increasing resilience to drought and floods (Donovan et al., 2021). Maize 

agriculture in China has also been assessed using NDVI for its resilience to drought with implications for 

more optimal and sustainable water use in agriculture (Jing et al., 2023). Pastureland in the Netherlands 

and Uruguay have been assessed for resilience to drought and climate anomalies with remote sensing in 

order to determine more sustainable and optimal management practices (De Keersmaecker et al., 2016; 

Tommasino et al., 2023). To live and develop sustainably, social-ecological resilience is needed, thus 

determining the social-ecological feedbacks and practices that build resilience is necessary (Folke, 2006). 

Assessing resilience remotely can provide feedback on the effectiveness of management or agricultural 

practices and assist in decision making.  

Quick monitoring and translation of information into decisions and actions are needed if humans are to 

contribute to the maintenance of a livable Earth (Lenton and Latour, 2018). Recovery rates can be used 

to compare over time and space and assess trends in resilience, provide maps of more vulnerable areas, 

and help assess the risk of approaching critical transitions (Dakos et al., 2015). Knowing the areas of 

higher vulnerability, as well as the interventions or management strategies of places of higher resilience, 

can help speed the spread of effective resilience-building tools. Agroforestry is a proven tool for 

improving local soil, microclimates, and water management, as well as the economic resilience of 

smallholder farmers, and it is already used by Kenyan farmers as a tool to increase their farm resilience 

to water variability. Determining quantitatively whether agroforestry improves resilience on TIST farms 

and in the surrounding areas will provide more evidence for the adoption of locally driven agroforestry. 

Thus, my research questions are as follows. 

3. Research Questions 
RQ1: Can resilience to drought be estimated with vegetation recovery rate via remotely sensed data in 

Kenya? 

RQ2: Do farms engaged in agroforestry with TIST exhibit greater resilience, as measured by recovery 

rate, to drought than non-TIST land? 
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RQ3: Does TIST membership affect the recovery from subsequent drought events?  

RQ4: Are there any spillover effects from TIST groves into the surrounding areas?  

This study will use remotely sensed data on vegetation health throughout the drought and recovery 

periods of recent years to assess resilience to drought using recovery rates. Farms involved in the TIST 

agroforestry program will be compared to surrounding areas to determine the effect of TIST on 

resilience to drought.  

4. Methodology 

Study area, timeframe, and drought indicators  
The study area is Tharaka-Nithi, Meru, Embu, and Nyeri counties in Kenya, surrounding Mount Kenya 

(Figure 6). The study area was chosen to encompass arid and semi-arid lands (ASAL) counties, a large 

group of TIST farms, and comparable agricultural and semi-natural areas. Kirinyaga was excluded 

because it is not an ASAL county, and Laikipia was excluded as it is mainly dry rangeland with different 

 

County Drought 
Events 

TIST 
Groves 

Meru 5 16,906 

Tharaka 5 5,827 

Embu 
 

7 359 

Nyeri 4 3,870 

 
 
 

 

Figure 6: (Left) Relevant counties and TIST groves (in purple) within those counties. (Top right) Number of drought periods 
classified by the NDMA from its beginning in 2016 through May 2023. Number of TIST groves as verified between 2005-2018. 
(Bottom right) Location of study area within Africa. Figure created with QGIS. Background map data and imagery: ©2023 
Landsat/Copernicus, TerraMetrics, Google 

agro-ecological characteristics than the study counties (Recha, 2018). There are two major ecoregions 

represented. East African montane forest is a patchwork of evergreen tropical moist broadleaf forest 

and bamboo at middle altitudes that transitions to woodland and savannah at lower altitudes (Martin 
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and Burgess, 2023a). The ASALs moving away from the mountain are Acacia-Commiphora bushland and 

thicket, which are hotter and drier (Martin and Burgess, 2023b). Tharaka-Nithi, Embu, and Meru are 

classified as south-eastern marginal agriculture counties, and Nyeri is agro-pastoral (NDMA, 2023). The 

landscape within these counties is heterogenous (Figure 7). Agricultural practices vary between different 

agro-ecological zones which are delineated along altitude and corresponding precipitation and climate 

differences. Higher and wetter zones farm tea, coffee, maize, and sugarcane, while middle zones grow 

maize, beans, and sweet potato, and lower and drier zones transition to ranching, sorghum, and millet 

(Recha, 2018). There are more than 26,000 verified TIST groves in the region as of 2018, with a median 

of 84 trees and 0.279 hectares based on the data provided by TIST as collected through their carbon 

quantification process. The majority of TIST groves (16,906) are in Meru (Figure 6).   

  

 

 
 

 
Figure 7: Ecoregions (right) and landcover (left) of the study 
area.  

 

The timeframe of the study is between 2013-2023 due to the availability of Landsat-8 data and the 

recent droughts in Kenya (2016-18, 2020-present). To estimate the recovery rate, specific disturbances 

must be determined. Though some studies use the data itself to determine disturbances through abrupt 

shifts in the data (Smith et al., 2022), that approach is more suited to large studies where disturbances 

cannot be readily identified for all pixels. In this geographically constrained study, disturbances are 

defined by the drought classifications issued by the Kenyan National Drought Management Authority 

(NDMA). 

NDMA was established in 2016 and began issuing monthly drought severity classifications for each ASAL 

county as shown in Figure 8 (NDMA, n.d.). These publicly available bulletins are based on a combination 

of precipitation indices and surveys of residents to classify each month as Normal, in Recovery, Alert, or 
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Alarm phases. Surveys include questions about 

livestock forage quality, food scarcity, livestock 

body condition, water access, crop prices, and 

crop success (Bowell et al., 2021; NDMA, 2022). 

A separate study has shown that surveys of 

Kenyans’ perception of the state of drought had 

a strong correlation with instrument measured 

rainfall and vegetation change, supporting the 

local knowledge basis of these classifications 

(Linke et al., 2020). A study of the NDMA 

classifications in comparison to standard 

drought indices such as the standard 

precipitation index, soil moisture, or vegetation 

condition index based on measured data like 

precipitation, temperature, or satellite 

observations found that the different indices 

correlated very differently with the NDMA 

classification for each county, potentially due to 

the very different human water withdrawal and 

geology of water reservoir buffers in the 

different counties (Bowell et al., 2021). 

Additionally, because drought can be defined in 

multiple ways and is not exclusively a product of precipitation or temperature (Mishra and Singh, 2010), 

using a more holistic indicator of the drought state and its impacts as captured through the local surveys 

provides a more comprehensive picture, taking into account the socio-economic, agricultural, and 

hydrologic characteristics that are difficult to capture in another single metric. Though they are less 

geographically and temporally specific than available precipitation data such as CHIRPS, precipitation 

data spatial resolution is still large (e.g., CHIRPS at 5.5 km) and the tradeoff for spatial resolution in order 

to capture other aspects of drought was taken (Funk et al., 2015). Nonetheless, it should be noted that 

each county is heterogenous, and the drought conditions may vary across the county despite the 

uniform classification. Thus, disturbance and recovery periods are based on the NDMA classifications; a 

disturbance is any month(s) classified as Alert or Alarm, and a recovery period is assessed for any 

transition to Recovery or Normal after a drought period that lasts more than one month. A subset of 

drought classifications and the major recovery periods according to the NDMA are shown in Figure 9. 

Because each county clearly has distinct histories and severities of droughts before any one recovery 

month, pixels from each county will be compared separately. The entire table can be found in the 

Appendix, Table 3.  

Figure 8 : Example drought classification by the National 
Drought Management Authority (NDMA, 2023). 
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Figure 9: A subset of the drought categorizations from the start of the availability of the NDMA reports (Month 40, 
September 2016) until Month 80, January 2020. The highlighted months (54, 59, and 77) represent the start of recovery 
periods.  

Data acquisition 
Publicly available remotely sensed data was obtained from Google Earth Engine (GEE) (Gorelick et al., 

2017). Landsat-8 Operational Land Imager was chosen which has 30m resolution and a 16-day revisit 

period (NASA Landsat Science, n.d.). The surface reflectance dataset was used with data available 

beginning April 2013, including atmospheric correction and cloud masking. Sentinel-2 has higher spatial 

and temporal resolution at 10m and 5-day revisit period with two satellites; however, the first satellite 

did not collect images in the study area until December 2015, and the second satellite (along with cloud 

masking algorithms) are not available before April 2017 (ESA, 2023), well into the first drought period of 

interest. Landsat-8 has sufficient resolution to see important changes in vegetation and has comparable 

accuracy to Sentinel-2 for vegetation indices and analyses (Kennedy et al., 2014; Arekhi et al., 2019; 

Kowalski et al., 2020).  

Clouds, haze, or fog reduce the observed NDVI (Zeng et al., 2022), therefore the atmospherically 

corrected data was masked using the Landsat quality pixels to remove these artefacts. Though differing 

angles of the sun to the sensor can cause the reflectance to vary (Sims et al., 2006), the study area is on 

the equator, ensuring a more constant solar angle and also a constant time of day for the satellite 

crossing (approximately 10 am every day) (NASA Landsat Science, n.d.).  

NDVI was chosen as the proxy measurement for the state of the vegetation system as it has been 

proven to reflect vegetation productivity and overall health, including in ASALs in Kenya (Shisanya et al., 

2011). It is correlated with precipitation and drought and has been used to monitor drought response 

(Liu et al., 1994; Sims et al., 2006). Though NDVI is strongly affected by bare soil which may occur 

around harvest times (Zeng et al., 2022), NDVI has been used in this area effectively (Buxton et al., 

2021). Thus, NDVI was calculated in the study area between April 2013 and May 2023. GEE code is 

included in the repository in Section 8. 

To classify pixels into counties, SHP files of county boundaries were obtained (RMCMRD Africa 

GeoPortal, 2020). Boundaries of TIST groves were provided by TIST. Though the outlines are intended to 

encompass only the grove, trees are not always planted in a contiguous grove and are sometimes 

planted along field borders in narrow strips; therefore, pixels with any part contained within the 

outlined grove were considered grove pixels. To classify neighbors, the Euclidean distance from the 

center of all non-TIST pixels was found to the center of the nearest TIST pixel. Any pixel with a distance 

Month # 40 54 59 77 80

Meru AlertAlertNormalAlertNAAlertNAAlertAlertAlertAlertAlertAlertAlertNormalNormalAlertAlertAlertNormalNormalNANormalNANormalNANormalNANormalNormalNANormalNormalNormalNormalNormalAlertNormalNormalNormalNormal

Tharaka NormalNormalNormalAlertNAAlertNAAlertAlertAlertAlertAlertAlertAlertAlertAlertAlertAlertAlertNormalNormalNANormalNANormalNAAlertNAAlertAlertNAAlertAlertAlertAlarmAlarmAlarmRecoveryRecoveryNormalNormal

Embu NormalNormalAlertAlertNANormalNAAlertAlertAlertAlertAlertAlertAlertNormalNormalNormalAlertAlertNormalNormalNANormalNANormalNANormalNANormalAlertNAAlertAlertAlertAlertAlertAlarmNormalNormalNormalNormal

Nyeri NormalNormalNormalNormalNAAlertNAAlertAlertAlertAlertAlertAlertAlertNormalNormalNormalNormalAlertNormalNormalNANormalNANormalNANormalNANormalAlertNAAlertAlertAlertAlertAlertAlertNormalNormalNormalNormal

Key NA Not available AlarmAlarm AlertAlert RecoveryRecovery NormalNormal
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between 0 and 60m (exclusive) is considered a direct neighbor, i.e. any pixel bordering a TIST pixel 

(Appendix, Figure 33). 

To consider other explanatory variables, several other datasets were downloaded from GEE. For 

relevant comparisons between similar land cover types and to remove built-up land, the ESA 

Worldcover v100 for 2020 was used which has 73.6% accuracy in Africa and is more accurate for higher 

resolution, heterogenous landcovers than other comparable datasets (Tsendbazar et al., 2021; Zanaga 

et al., 2021; Venter et al., 2022). The landcover categories were reduced from 10m to 30m resolution 

using mode (Smith et al., 2022). In the ten years of the study, land cover change is assumed to be 

minimal, as land converted from forest to farmland or vice versa will have a shift in NDVI pattern. To 

compare ecoregions, RESOLVE Ecoregions 2017 was used (Dinerstein et al., 2017). To control for the 

effects of unmodified versus highly human modified land, the Global Human Modification Gradient was 

used, which compiles datasets of agriculture, human settlement, transportation, and energy production 

to produce an index of human modification at 1 km resolution circa 2016 (Kennedy et al., 2019). Altitude 

was obtained from the NASA SRTM Digital Elevation at 30m resolution (Farr et al., 2007). The yearly 

average precipitation over the study period was derived from CHIRPS (5.5 km resolution) (Funk et al., 

2015). Finally, the mean and standard deviation of the monthly NDVI over the study period was 

calculated after the filtering described below.  

Data preprocessing 
Preprocessing was performed as shown in Figure 10. First, the data was temporally reduced to monthly 

resolution using a maximum composite to minimize missing data from cloud masking; monthly 

resolution is sufficient because it is more frequent than the vegetation drought recovery being 

measured which is usually several months (Vicente-Serrano et al., 2013). Maximum value compositing is 

effective for NDVI because errors tend to reduce NDVI, and it is computationally inexpensive (Pettorelli 

et al., 2005).  

Then the data was downloaded from GEE for local processing using Python 3.11. Pixels with landcover 

other than tree cover, cropland, shrubland, and grassland were removed, such as bare ground or built-

up areas. 

 

Figure 10: Data preparation process.  

Despite the monthly maximum composite, most pixels still had months with no valid measurements 

taken, especially in forested and cloudier areas (Figure 11). There were not enough semi-continuous 

Mask clouds in 
GEE

Calculate NDVI 
Find monthly 

maximum NDVI
Download from 

GEE

Construct 
'average year' 
for each pixel

Fill gaps of 1 
month (linear 
interpolation)

Fill remaining 
gaps with 

'average year' 
values

Deseason and 
detrend with STL 

- left with 
residuals.

Remove the 
'average year' 
values to leave 

gaps
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observations to fit recovery rates well across the study area (e.g., fewer than half of pixels had 9/12 valid 

data points in recovery periods for Tharaka county; while 75-90% of pixels in each county had 6/12 valid 

data points in recovery periods, this was found to be insufficient for estimates). To proceed, several 

approaches were investigated to maximize data quantity and quality. There are many NDVI 

reconstruction algorithms available in the literature utilizing temporal or spatial gap-filling (Liu et al., 

2017; Cao et al., 2018). Because there are two growing seasons in Kenya, each monthly observation is 

likely to experience a shift in direction from the previous month. This limits the use of common 

algorithms such as the Savitzky-Golay filter (Chen et al., 2004) as used by Smith et al. (2022) which uses 

linear interpolation to fill gaps which are then smoothed. This is effective for a higher sampling 

frequency and short gaps, but linearly interpolating over long gaps eliminates the seasonal variation 

expected in the study area (Appendix, Figure 29), which is a recognized constraint of many 

reconstruction algorithms in cloudy tropical areas (Liu et al., 2017). Algorithms that merge observations 

from other satellites such as MODIS to fill in gaps in the Landsat timeseries were also investigated (Chen 

et al., 2021) but could not be implemented due to time and computing resource constraints.  

Thus, gap filling and decomposition were performed as follows. First, the average NDVI for each month 

over the decade was found per pixel. Then, gaps of one month were filled per pixel with linear 

interpolation. No more than one month was filled because the seasons in Kenya are two to three 

months long (NDMA, 2022). After filling, any remaining empty pixels were replaced with the 

corresponding monthly average to create a continuous timeseries in approximately the correct seasonal 

shape for detrending (Figure 12). The replaced average pixels were removed after decomposition.  

 

Figure 11: The 
percentage of months 
missing for each pixel in 
the study area.  
Forested areas around 
Mount Kenya are 
cloudier and missing 
more pixels, between 
50-75% generally. The 
lighter vertical band is 
the area where Landsat-
8 tiles overlap and thus 
have more 
opportunities for cloud-
free observations each 
month. Cloudier areas 
have missing streaks up 
to 35 months long. Most 
pixels are missing 3-10 
months in the longest 
missing streak.  Figure 
created with QGIS. 
Background map: 
©2023 
Landsat/Copernicus, 
TerraMetrics, Google 
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Figure 12: Example of gap filling. Green points are the original time series. Red stars show linear interpolation for gaps up to 
one month. The dark blue line shows the trend created with the original data, one month interpolation, and remaining gaps 
filled with averages. The cyan dotted line shows the trend if all gaps were filled with the monthly averages, indicating places 
where linear filling could cover up the seasonal shape. Filling one month was found to be the best compromise between 
maintaining enough data for recovery rate calculation while not overly smoothing the dataset. 

To remove any non-stationarities in the greenness data, such as a gradual greening in agroforestry 

groves, and the typical yearly cycle of greenness from seasons, an additive model was assumed and 

seasonal trend decomposition by Loess (STL) was used (Cleveland et al., 1990) as implemented for 

Python by Smith et al. (2022). This 

algorithm is commonly used, robust to 

outliers, and less computationally 

expensive than comparable algorithms 

(Verbesselt et al., 2016; Ben Abbes et al., 

2018). The parameters were chosen as 

suggested by the authors (Cleveland et 

al., 1990). A slow-changing seasonal 

window of 21 was selected because the 

normal cycles of seasons could be 

distorted by long droughts. The 

decomposition yields a residual, 

representing the base state of the 

system (Figure 13). After discarding the 

residuals obtained from the replaced 

average “observations,” the mean and 

standard deviation of each pixel’s residual 

was calculated and saved for the recovery 

rate estimation. Using the residuals also 

Figure 13: Example of STL decomposition. The top plot shows the 
input NDVI observations after linear interpolation and gap filling with 
monthly averages. The timeseries is then decomposed into its trend, 
seasonal, and residual components. The residual represents the base 
state of the system and is used for resilience analysis. 
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accounts for the differences in mean NDVI and seasonal cycles for different vegetation types, e.g., from 

consistently green trees to constantly cycling crops.  

Recovery rate estimation  
To estimate the recovery at each pixel (Figure 14), the recovery period was obtained for the 12 months 

centered around a recovery month. Recovery months are defined as months that transitioned from an 

Alert or Alarm phase into a Recovery or Normal phase for more than one month. A twelve month period 

was chosen because plants in tropical biomes tend to respond to drought conditions and recoveries 

within four to seven months (Vicente-Serrano et al., 2013) while also minimizing the overlap with 

subsequent droughts and recoveries. Only pixels with at least 9/12 months with valid data during the 

recovery period were selected. Then, the local minimum of the residual was found within the 12 months 

(White et al., 2020). The local minimum was required to be more than one standard deviation from the 

mean residual to indicate a true disturbance. This was supported by tests of recovery estimation from a 

sample of pixels (n = 5000) without any threshold; those with disturbances greater than one standard 

deviation away from the mean tended to have a better fit (measured by R2) of the recovery (Appendix, 

Figure 30 - Figure 31). If the minimum was not lower than the threshold, the pixel was marked as no 

disturbance. After finding the local minimum, the remainder of the 12-month recovery period was 

included after it for the sample to be fit. Finally, to ensure that the fitted exponential was a reflection of 

a recovery to the equilibrium state (Lenton et al., 2022), the mean of the pixel’s residual was added as 

six additional datapoints to the recovery sample. Using the residual also prevented the equilibrium state 

from being influenced by any long-term trend in the data.  

 

Figure 14: Recovery rate calculation process.  

Then, an exponential of the form 𝑥(𝑡) =  𝑎𝑒𝜆𝑡 + 𝑐 was fit using nonlinear least squares to the recovery 

sample (Figure 15) (Buxton et al., 2022; Smith et al., 2022). An initial guess was provided. After testing 

with sampled data (n= 5000) for optimal convergence and fit (measured by R2), the initial guess was set 

to a = -0.05, λ = -0.2, and c = 0.05 (Appendix Figure 32). After fitting, the appended six months of the 

mean were removed, and R2 was calculated. The pixel was marked as no valid calculation for four 

conditions: a) if the curve fitting could not converge; b) if the local minimum was more than four months 

after the recovery month, meaning than less than three months of real data were available to fit to; c) if 

the R2 value was outside the normal range of zero to one, indicating that the data was fit to a 

nonsensical model and did not demonstrate the exponential recovery; or d) if the determined a and c 

parameters were far outside the expected values (c outside of [-1, 0.5] or a > 0.1), again indicating a 

nonsensical model fit.  
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Figure 15: Example fitted recovery rate.  

Comparisons 
For all analysis, the absolute value of the recovery rate was used (higher rate indicates faster recovery). 

To compare how the recovery rate may have changed over time, the percent change between 

subsequent recoveries was calculated for any pixel that had a valid recovery rate calculation for both 

recovery periods. While this ignores any categorical changes between pixels that may not experience a 

disturbance in the first drought but did in the second, that would measure resistance more than 

resilience, which is outside of the scope of this study.  

Spearman’s rank correlation was used for non-parametric correlations (Tai et al., 2023). The chi-square 

test for independence was used to compare effects of categorical variables on categorical outcomes 

(e.g., landcover type vs. disturbance or no disturbance detected) which is appropriate due to the large 

sample size (Franke et al., 2012).  

To test the difference between distributions of the continuous recovery rate results, the Kruskal-Wallis H 

test (KWH) was used with post-hoc Dunn (PHD) test for a non-parametric analysis of more than two 

groups (Campbell and Wang, 2020; Nolè et al., 2022). While the original null hypothesis for the KWH is 

that the samples are from the same distribution, if the two distributions have similar shape and scale 

the test can be used to find difference in location (Kruskal and Wallis, 1952). The recovery rate results 

are left skewed with highest probabilities around 0.5-1.5 with long tails to the right, so this assumption 

was used (Appendix, Figure 34, Figure 35). Because of the long tail of the distribution, means are right 

skewed, so the median was used as the measure of central tendency. The Dunn post-hoc test compares 

the results pairwise after the KWH (Dunn, 1964). All comparisons were made only between pixels from 
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the same county for the same recovery period because each county has a different history of droughts 

and recoveries.  

To fairly compare TIST groves, neighbors, and non-TIST pixels given the variable agro-ecological 

conditions across each county, the landcover categorization was used to compare like for like pixels, and 

the human modification gradient filtered out pixels with very few anthropogenic stressors (score < 0.1). 

The landcover classification algorithm is based on characteristics such as the ecoregion, altitude, 

spectral characteristics, and vegetation indices (Van De Kerchove et al., 2020); each landcover type has a 

statistically significantly different profile in yearly precipitation, greenness, and altitude (Appendix Figure 

40, KWH with PHD, p < 0.001). Comparing by landcover type is a concise method to generally control for 

these advantageous characteristics. This also somewhat controls for the different seasonal patterns of 

each landcover (e.g., planting-harvest cycle of cropland).  

The management of TIST farms is assumed to be sufficiently similar to each other and different from 

non-TIST farms, due to the training and best practice knowledge dispersed through the TIST clusters and 

small groups, that the overall differences may be attributable to TIST membership between otherwise 

similar pixels.  

To assess spillover effects, the distance to the nearest TIST pixel was used. Because the landcover types 

are somewhat mixed in space and each county is heterogenous, the landcover approach does not 

necessarily control for the way that a drought might have different severity across the county. The 

landcover types also might not be completely accurate as they were composited with mode, and a 30m 

Landsat pixel might contain crop areas, built up areas, and trees. Thus, to compare TIST only with pixels 

in its immediate area that would be experiencing very similar drought (meteorological, hydrological, 

agricultural, and socio-economic) conditions and to determine how far any benefits might reach, pixels 

were compared using the distance to the nearest TIST grove. Only pixels within 1km were considered to 

ensure that the comparison pixels were experiencing sufficiently similar agro-ecological conditions 

because the climate and meteorological conditions are highly spatially variable (Fischer et al., 2013; 

Camberlin et al., 2014). Additionally, TIST groves have been shown to have a greening effect only up to 

390m away (Buxton et al., 2021). Human modification filtering was not necessary because there are no 

areas with a modification score less than 0.1 within one kilometer of TIST groves.  

5. Results 

RQ1: Can resilience be estimated using recovery rates?  
While recoveries were calculated for the relevant counties for months 54, 59, 77, 104, 114, and 116, 

only results from 59 (April 2018) and 77 (October 2019) will be discussed. Recoveries 104 and 114 were 

highly contaminated by clouds, resulting in only 2% and 18% of pixels attempted. Recovery 116 was too 

close to the end of the timeseries for the return to equilibrium to be observed effectively. Finally, 

Recovery 54 significantly overlapped with Recovery 59, causing the recovery associated with month 59 

to be detected at the end of the Recovery 54 period. Thus, the rates calculated for Recovery 54 are 
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highly correlated with 59 and cannot be attributed to Recovery 54 without individual analysis of each 

timeseries, and it will not be considered further here.  

Meru and Tharaka had proportionally the most pixels with sufficiently complete timeseries to be 

attempted for Recoveries 59 and 77 (56%-70%), resulting in pixels with disturbances detected and rates 

estimated out of all pixels at 44% and 55% respectively for Recovery 59 and 36% and 37% for Recovery 

77. Embu and Nyeri were less successful mainly because of less complete timeseries due to clouds (29%-

42% pixels attempted, between 14% and 28% successfully calculated). Over all counties, there were 

relatively few pixels where a disturbance was detected but a curve could not be fit (between 1%-4% of 

attempted pixels for all counties except Nyeri in Recovery 59 at 10%). The pixels where no curve could 

be fit tend to be in wetter (higher yearly precipitation) and greener (higher mean NDVI) areas across 

counties and recoveries and have higher amounts of missing months. Recovery 77 has a higher 

proportion of pixels where no disturbance was detected (39-63% of attempted pixels by county) than 

Recovery 59 (6-20% of attempted pixels). The complete table is in the Appendix, Table 4.  

A visual analysis of the results shows spatial trends (Figure 16, Figure 17). For example, the north of 

Meru transitions from montane forest to bushland, and generally pixels exhibit different resilience. In 77 

the differences between shrubland and forest are especially noticeable, with bushlands farther away 

from Mt. Kenya showing more No Disturbance (shrubland pixels exhibited greater proportion of No 

Disturbance in all counties except Nyeri, chi-square test, p < 0.001). The maps also demonstrate that  

 

 
Figure 16 : Recovery 
rates for the recovery 
at month 59 across the 
four counties.  
TIST plots not shown. 
Figure created with 
QGIS. Background map 
data and imagery: 
©2023 
Landsat/Copernicus, 
TerraMetrics, Google 

59 – April 2018 
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Figure 17 – Recovery 
rates for the recovery 
at month 77 across the 
four counties. TIST 
plots not shown. Figure 
created with QGIS. 
Background map data 
and imagery: ©2023 
Landsat/Copernicus, 
TerraMetrics, Google 

 

calculated pixels skew towards drier areas as those areas have less cloud contamination and fewer 

missing pixels. Zooming in, denser vegetation can often be seen reflected in the recovery rates as areas 

with higher recovery rates or no disturbance shown (Figure 19, Figure 18). These spatial trends provide 

validation that the calculated recovery rates are reflecting real vegetation recoveries. Distributions of 

recovery rates across counties and recoveries are similar (Appendix Figure 34, Figure 35). Most recovery 

rates are estimated between zero and two, with some extreme values clustered at 10 and 20, and a 

small number of outliers estimated as high as 60; however, Nyeri in Recovery 77 has a much higher 

proportion of high rates estimated (Discussion, Figure 25). 

Factors besides TIST membership have relationships with resilience. Of the considered other variables, 

most have some relationship with recovery rates and are often interrelated. Mean NDVI is weakly 

positively correlated with faster recovery (Spearman’s ρ -0.06-0.37, p < 0.001) depending on the county 

and recovery. Precipitation (-0.02-0.22, p < 0.001), altitude (-0.05-0.37, p < 0.001), and percent missing 

months (-0.07-0.23, p < 0.001) are also weakly correlated with faster recovery rates (see Appendix 

Figure 37 for complete matrices). These beneficial characteristics are interrelated. Mean NDVI is 

moderately positively correlated with yearly average precipitation (0.46-0.71, p < 0.001), altitude, and 

missing pixels (see example correlation plot, Figure 20). The proportion of missing months and 

precipitation are moderately correlated (0.21-0.79, p < 0.001), and altitude and yearly average 

precipitation have a variable positive relationship depending on the county (0.18-0.92, p < 0.001). Each 

of these beneficial characteristics was weakly negatively correlated with the standard deviation of NDVI, 

indicating that drier, lower, and less green areas generally had more variable greenness. Additionally,  

77 – October 2019 
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landcover types and ecoregions have significantly different recovery rates across counties and 

recoveries (KWH test, p < 0.001 for all ecoregions and landcovers). Pixels classified as tree cover have 

the fastest median recovery rates (Appendix, Figure 38). By ecoregion, montane forests have higher 

median recovery rates than bushlands (Appendix, Figure 39).  

  
Figure 18a: Meru County at boxed location. 
TIST grove outlines in black. Figure created with QGIS. 
Background map data and imagery: ©2023 
Landsat/Copernicus, TerraMetrics, Google.  
Scale: 1 recovery pixel : 30m 

 

Figure 19a: Tharaka County at triangle location. 
TIST grove outlines in black. Figure created with QGIS. 
Background map data and imagery: ©2023 
Landsat/Copernicus, TerraMetrics, Google 
Scale: 1 recovery pixel : 30m 

  
18b: Recovery 59 – Denser vegetation shows no 
disturbance. 

 

19b: Recovery 59 – Waterway and vegetation visible in 
stronger recoveries or no disturbance shown 

  
18c: Recovery 77 – Denser vegetation has faster recovery 
than surrounding areas. 

19c: Recovery 77 - Waterway is still visible, and areas 
closer to it show either no disturbance or slightly stronger 
recoveries. Generally, recovery is slower after this 
drought. 

 



30 
 

The correlations of estimated rates 

with the extracted residuals were 

assessed to check that the method 

did not impart some sort of bias. The 

mean and standard deviation of the 

residual were weakly negatively 

correlated with recovery (Spearman’s 

ρ, -0.30-0.01 for mean residual, -0.26-

0.05 for standard deviation, p < 

0.001). The mean residual was 

negatively correlated with mean 

NDVI (-0.69 to -0.28, p < 0.001), 

meaning a greener area had a lower 

residual after decomposition; the 

correlation of mean residual with 

slower recovery is likely due to this 

association. 

 

RQ2: Effect of TIST on recovery rates   
Categorizing all calculated pixels by recovery period, county, and belonging to a TIST grove, immediate 

neighbor, or non-TIST, TIST appears to have a significant beneficial effect on recovery rates. However, 

there are other explanatory variables that also have a statistically significant effect as described above 

such as mean greenness, precipitation, landcover type, and ecoregion. TIST groves tend to have more of 

these beneficial characteristics: TIST and Neighbors tend to be in montane forest regions, have 

landcover classified as trees or crops, have a higher mean NDVI, higher altitude, and higher yearly 

precipitation (significantly different distributions, chi-square test for landcover and ecoregion, all p < 

0.001, KWH test for all others, all p < 0.001, Appendix Figure 36). However, the relative characteristics of 

TIST pixels do differ by county (see Discussion, Section 6).  

Comparing by landcover to control for these characteristics as discussed in the Methods, TIST pixels 

demonstrate some benefit but not universally (Table 1). In Tharaka, TIST and/or Neighbors have 

significantly different median recovery rates to Other pixels in every land cover (p < 0.001). TIST and/or 

Neighbors have higher median recovery rates across land cover types. In Meru, TIST and/or Neighbors 

are significantly different (p < 0.001) than Other for all categories except Recovery 59 in shrubland, 

where Neighbors are significantly different and TIST and Other pixels are not. TIST and Neighbors have 

higher medians for grassland, cropland, and shrubland (only in Recovery 77), while Other pixels have 

higher recovery rates in tree cover. In Nyeri, TIST and Neighbors were significantly different to Other 

pixels (p <0.001). Other pixels had faster recoveries in 59, while TIST had faster recoveries in 77. The 

overall magnitude of median recovery rates is much higher in Nyeri. Embu had mixed results, and some 

recoveries had no significant differences; note that Embu has the smallest sample size by orders of 

magnitude (Appendix, Table 5). 

Figure 20 : Spearman’s rho for recovery rates and other characteristics in 
Tharaka. All p < 0.001. 
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Table 1: Median recovery rates compared by county, recovery and landcover classification. (No marking indicates p < 0.05 
after KWH and pairwise PHD; * indicates no significant difference in pairwise PHD). Grouping with the highest median 
recovery rate highlighted; if pairwise differences were not significant between the fastest rates, both groups are highlighted. 
The sample size for each group can be found in the Appendix, Table 5.  

Landcover class Tree cover Shrubland Grassland Cropland 

Recovery Period 59 77 59 77 59 77 59 77 

Tharaka TIST 1.61 1.68* 1.21 0.97 1.06 0.70 1.17 0.72 

 Neighbor 1.72 1.71* 1.25 1.03 1.10 0.65 1.14 0.74 

 Other 1.34 1.38 1.20 0.69 1.04 0.62 1.13 0.61 

 

Meru TIST 1.38 1.87* 1.16* 2.14 1.18* 2.76* 1.14* 1.68 

 Neighbor 1.42 1.94* 1.20 2.23 1.22* 2.88* 1.13* 1.75 

 Other 1.50 2.45 1.22* 0.94 1.14 0.83 1.13 0.98 

 

Nyeri TIST 1.63* 10.99* 1.30* 16.86 1.25 20.70* 1.29* 17.49* 

 Neighbor 1.82* 11.13* 1.29* 12.55 1.29 20.74* 1.32* 13.59* 

 Other 2.44 2.44 1.37 2.54 1.33 4.31 1.35 9.83 

 

Embu TIST 1.33* 10.79 1.29* 0.58* 1.32* 0.84* 1.37 0.65* 

 Neighbor 1.31* 2.63* 1.31* 0.63* 1.34* 0.95 1.33 0.65* 

 Other 1.54* 1.31* 1.33* 0.90 1.23 0.75* 1.24 0.74 

 

RQ3: Recovery from subsequent droughts   
The percent change in recovery rate from Recovery 59 to Recovery 77 was compared by county and 

landcover or distance from TIST. As can be seen in Figure 21, there are very few pixels where both 

recoveries were available so that the change could be calculated. There were no calculated change 

pixels with a modification score less than 0.1.  

When comparing by landcover, TIST and Neighbors often experienced less decline in recovery rates than 

Other pixels during the second drought (KWH test with pairwise PHD). In Tharaka, TIST and Neighbors 

were significantly different (p < 0.001 unless otherwise noted in Table 2) from Other in all categories 

except grassland. In Tharaka, in each category there was a median decrease in recovery rate, but TIST 

and Neighbors decreased less than Other. In Meru, all landcover categories showed significant 

differences between TIST/Neighbor and Other pixels (p < 0.001). Except for tree cover, TIST pixels 

increased recovery rate while Other pixels decreased recovery rate. Other pixels in tree cover increased 

rate more than TIST or Neighbor pixels. In Nyeri, extremely high percent changes were observed, but 

TIST/Neighbors were significantly different (p < 0.001) in all landcover types and had higher increases in 

rate. Results in Embu, as for the recovery rates themselves, were mixed and not always significantly 

different; the sample size was also orders of magnitude lower than other counties (Appendix, Table 6). 
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Figure 21: Spatially 
plotted results for the 
percent change in 
resilience over time.  
Black dots indicate TIST 
groves. Very few pixels 
had enough valid data to 
be calculated. Figure 
created with QGIS. 
Background map data 
and imagery: ©2023 
Landsat/Copernicus, 
TerraMetrics, Google 

 

Table 2: Median percent change in recovery rate from Recovery 59 to Recovery 77, compared by landcover. (No marking 
indicates p < 0.05 after KWH and pairwise PHD; * indicates no significant difference in pairwise PHD). Grouping with the 
highest median recovery rate highlighted; if pairwise differences were not significant between the fastest rates, both groups 
are highlighted. The sample sizes are shown in Appendix, Table 6. 

Pct. change in recovery rate 
(median) 

Tree cover Shrubland Grassland Cropland 

Tharaka TIST -2% * -29% * -39% * -40% * 

 Neighbor -2% * -26% * -44% * -39% * 

 Other -7% -39% -40% * -47% 

 

Meru TIST 2% * 14% * 53%  8% * 

 Neighbor 4% * 18% * 31%  14% * 

 Other 13% -21% -26% -20% 

 

Nyeri TIST 89% * 724%  1053% * 841%  

 Neighbor 86% * 426% 994% * 591%  

 Other -3% 64% 117% 131% 

 

Embu TIST 363% * -60% * -47% * -53% * † 

 Neighbor 43% * -62% * -20%  -57% * 

 Other -16% * -44% -44% * -48% *  
† In this category, TIST pixels are not significantly different to either Neighbor or Other pixels, but Neighbors and Others are 

significantly different. 
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RQ4: TIST spillover effects 
Controlling for distance from TIST showed a 

general decrease in median recovery rate 

farther away from TIST groves for some 

counties (Figure 22, Figure 23). Tharaka 

shows similar shallow declining trends for 59 

and 77. In 77, Meru shows an increase in 

recovery rates up to about 250m away, and 

then declines with distance, but shows a 

steady decline with Recovery 59. Nyeri 

shows much steeper trends with higher 

general magnitude than the other counties 

but shows an increasing rate with distance 

for 59 but a decreasing rate for 77. Embu 

exhibits a very erratic trend; however, the 

sample size for Embu is far smaller than the 

other three counties (Appendix, Table 6).  

  

Figure 23: Median recovery rates from recovery 77 for each county vs. distance to nearest TIST pixel. At right, Nyeri has been 
removed from plot to show detail.  

Looking at the change in resilience over time, trends emerge that echo the results for recovery rate 

versus distance. No completely unmodified land is included because it is not within one kilometer of any 

TIST groves. Embu has mixed results but a somewhat positive trend moving away from TIST. Nyeri has a 

strong decline in rate over time with increasing distance from TIST. Meru has an improving rate up to 

approximately 200m away from TIST plots and then declines. Tharaka shows a slight decline away from 

TIST plots. Nyeri shows a general increase in recovery rates between the two droughts and recoveries 

Figure 22: Median recovery rates from 59 vs. distance from TIST.  
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over all distances, while Tharaka and Embu showed a general decrease in recovery rates over time over 

all distances. Meru shows an increase for pixels within about 500m of a TIST grove but declines below 

zero farther away.  

 

Figure 24: Percent change in recovery rate from recovery 59 to 77, median over distance from nearest TIST grove. Right 
graph is the same except Nyeri has been removed to show details.  

6. Discussion 

RQ1: Can resilience be estimated using recovery rates?  
The results found here largely agree with existing resilience literature, though to the author’s knowledge 

no localized study with the same methodology has been performed for a more direct comparison. The 

fitted recovery rates match in magnitude with those found by Smith et al. (2022). This increases 

confidence in the methodology and results. 

The higher occurrence of no disturbance in drier shrubland areas is supported by existing literature. For 

example, in all counties, the bushland ecoregion is more likely to have no disturbance observed in 

Recovery 77 and for all counties except Nyeri shrubland or grassland landcovers are much more likely to 

have no disturbance observed in recovery 77. In Meru, only one month of drought preceded recovery 

77, while other counties had much longer and more severe droughts. Different ecosystems respond on 

different timescales to drought; semi-arid ecosystems have longer response times to drought than 

completely arid or humid ecosystems, which is posited to be because they tolerate a wider variety of 

water availability. Humid regions may react quickly to a lack of water availability because of stress, and 

arid regions react quickly as a survival adaptation mechanism (Vicente-Serrano et al., 2013; Liu et al., 

2018). Months of water stress may not have caused a detectable disturbance in the semi-arid 

shrublands because of their adaptations, while normally wetter ecoregions (montane forests) did 

experience a disturbance.  

While these semi-arid areas might react more slowly to water stress, they also recover more slowly thus 

exhibiting lower resilience by this definition. The shrubland ecoregion and shrub, grass, and crop 
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landcovers have the lowest recovery rates across counties and recoveries (except Nyeri in 77). This 

relationship was also found by several previous studies (De Keersmaecker et al., 2015; Liu et al., 2019; 

Smith and Boers, 2023; Tai et al., 2023). Tree cover and forest have been found to be generally the most 

resilient to water scarcity (De Keersmaecker et al., 2015; Liu et al., 2019; Miralles et al., 2019). These 

results agree, with tree cover and montane forest having the fastest median recovery rates across 

counties and recoveries (except Nyeri in Recovery 77). The correlations between precipitation and mean 

NDVI with faster recovery also agree with the literature; resilience to drought is generally higher in 

wetter climates with a water surplus, and wetter areas generally have higher mean NDVI (Smith and 

Boers, 2023; Tai et al., 2023). The positive association with altitude is also likely related to the changes in 

climate and precipitation with altitude (Camberlin et al., 2014). The agreement of these general 

relationships validates the method of recovery rate estimation to measure resilience in this area. 

RQ2: Effect of TIST on recovery rates  
TIST and Neighbors demonstrating higher recovery rates without controlling for environmental factors 

echoes results in the literature that assess management of agro-ecological systems: a combination of 

management practices as well as environmental conditions are strong determinants of resilience (De 

Keersmaecker et al., 2016; K. J. Lees et al., 2021; von Keyserlingk et al., 2021). Nonetheless, the effect of 

TIST is entangled with the background increased resilience from being situated in greener, wetter, and 

higher altitude areas than Other pixels. These beneficial background patterns are true for Tharaka and 

Meru. Nyeri and Embu show different patterns in these explanatory variables. Nyeri is on the leeward 

and drier side of Mt. Kenya and engaged primarily in agro-pastoralism rather than marginal agriculture 

(Camberlin et al., 2014; NDMA, 2022). TIST groves in Nyeri tend to have a lower mean NDVI (mean 

precipitation, altitude) than other pixels in the county (Appendix, Figure 36) whereas Meru and 

Tharaka’s TIST pixels tend to have higher NDVI (mean precipitation, altitude) than other pixels. In Embu, 

there is less distinction and TIST/Neighbor/Other pixels are more similar in all of these characteristics 

(though they are still statistically significantly different); the median NDVI, precipitation, and altitude of 

TIST pixels are also generally lower than the other counties. Embu also has the least TIST groves (only 

359), which are clustered far away from Mt. Kenya, unlike the other counties. Nyeri and Embu have the 

fewest pixels with calculation attempted (29-42% of total over the two recoveries, Appendix Table 4), 

suggesting that cloud cover posed a larger problem than for Tharaka and Meru.  

These differences appear to have affected the results from Nyeri and Embu. In Nyeri, Other pixels have 

faster recoveries for all of Recovery 59, but the opposite occurs in Recovery 77. The recovery rates for 

77 are also much higher than those in other counties or even 59 in Nyeri (rates around 10-20 rather than 

1-2, Figure 25). This may be in part due to cloud cover issues. As to be discussed in Limitations, pixels 

with only a single low month or highly erratic residuals often result in much higher recovery rates. Thus, 

if most pixels in the region are missing a month near the local minimum, this could result in many pixels 

with higher rates. Additionally, there appears to be some decomposition issues in Nyeri. A sampling of 

pixels’ residuals showed that some seasonal cycle is still present, which alters the residual values (Figure 
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26). Because this happened more often in Nyeri than other counties, the validity of results in Nyeri may 

be questioned. The issue with decomposition may be because of the climatic and  

agricultural differences in the county to the others. Because the decomposition was trialed and 

optimized on a sampling of pixels in Tharaka, it is possible that different parameters should have been 

used for the STL decomposition in Nyeri due to its physical differences. 

 

Figure 25: Distribution of estimated recovery rates for recovery 77. Note that Nyeri has a much higher proportion of pixels 
with very high rates. 

In Embu, the limited number of 

TIST pixels and cloud 

contamination likely leads to very 

mixed results. Embu pixels (with 

calculation attempted) have a 

median 39% of months missing, 

while the other counties have 

medians between 20-23%. This 

sparsity of calculated pixels 

which is visible on the maps 

(Figure 16, Figure 17) likely 

contributes to the inconsistent 

results. 

Considering the two remaining 

counties, Meru and Tharaka TIST 

and Neighbor pixels generally recover faster than Other pixels across landcover types, except for tree 

cover in Meru. This may be due partly to the advantageous characteristics of higher altitude and 

precipitation for TIST pixels; however, the landcover classifications largely stratify the pixels, as tree 

cover occurs in the higher and wetter areas, and cropland, shrubland, and grassland are mostly in the 

lower and drier areas (Appendix, Figure 40). Thus, in Meru and Tharaka, TIST does appear to have a 

relationship with increased resilience to drought beyond its physical location.  

Figure 26: This example pixels from Nyeri County show some seasonal cycle still 
present within the residual, potentially leading to the very steep recovery rates 
estimated.  
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TIST pixels in Meru do not recover more quickly than Other tree cover pixels; this may be because more 

natural or unmodified woodlands are more resilient to drought (Zhong et al., 2021). Indeed, the median 

human modification score for tree cover pixels in Meru is lower for both recoveries, indicating less 

human disturbance in areas of tree cover outside of TIST farms (e.g. Recovery 77: TIST = 0.71, Neighbors 

= 0.70, Other = 0.43, KWH with PHD indicates Other significantly different, p < 0.001). This is consistent 

with the case in Tharaka, where the median modification scores of tree cover pixels are higher for Other 

pixels, and the Other pixels had a slower recovery rate (e.g. Recovery 77, TIST=0.37, Neighbor = 0.36, 

Other = 0.41, KWH with PHD indicates Other significantly different p < 0.001). This supports previous 

findings that human disturbance decreases resilience of forests (Hishe et al., 2021; Boulton et al., 2022) 

and suggests that comparisons using anthropogenic stressors may be warranted in future work.  

Though correlation does not prove causation, it is plausible that TIST membership contributes to the 

observed higher resilience because TIST practices have been previously shown to contribute to a 

healthier agro-ecosystem that would be more resilient to drought. The positive effect on resilience of 

TIST groves and farms may stem from the trees themselves, the practices of TIST farmers, or both. The 

tree groves improve the soil and water usage by preventing erosion, fixing nutrients, and reducing water 

runoff which increase resilience to water stress (Jose, 2009; Rivest et al., 2013; Dollinger and Jose, 

2018). Especially in semi-arid landscapes, patches of trees increase the amount of water stored in the 

soil by increasing the depth that water can infiltrate and obstructing the runoff of water over the surface 

(Ludwig et al., 2005). Trees also can exploit water from deeper soil (Wallace, 2000). Intermittent tree 

cover has also been shown to be optimal in semi-arid zones for resilience (De Keersmaecker et al., 2015) 

which TIST creates by planting amongst otherwise agricultural areas in bare or disused land (TIST, 2023). 

The increased resilience of TIST grove pixels even when controlling for landcover type is likely influenced 

by the trees.  

The effect of trees can extend beyond the areas inside the groves due to the microclimate effects and 

provision of products from the groves. The shade of the trees reduces moisture evaporation from soil, 

increases evapotranspiration, and increases the surrounding humidity, creating a microclimate and 

cooling the area (Wallace, 2000; Ludwig et al., 2005). This improves not only the conditions in the grove 

but also the surrounding areas on the farm. Nearby pixels may also be stands of semi-natural woodland. 

Buxton et al. (2021) hypothesized that the greening effect from TIST groves observed in neighboring 

areas may be a combination of microclimate effects from the trees as well as decreased pressure on 

local woodlands. With farmers able to take fuelwood from their own trees by thinning or pruning the 

groves (TIST, 2023), there is less need to harvest wood from nearby woodlands. These avenues suggest 

that tree groves do contribute to the increased resilience of the Neighbor pixels.  

In both grove and neighbor pixels, the practices of farmers may increase resilience. The recovery rates of 

TIST and Neighbors were often statistically less significantly different than either group was to Other 

pixels and sometimes were not significantly different at all. This may be because pixels immediately 

surrounding the TIST groves are part of the TIST farm, and the techniques taught by TIST and used on 

the farm have a beneficial effect. Conservation agriculture and agroforestry are taught and emphasized 

in the small groups of TIST (TIST, n.d.; Oppenheimer, 2011; Masiga et al., 2012). Conservation agriculture 

focuses on reducing soil disturbance, leaving crop residues on the field, and rotating crops. These 
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practices increase water infiltration, reduce evaporation, and improve water use efficiency by improving 

soil quality and reducing runoff (Micheni et al., 2016; Boillat et al., 2019). By improving soil quality and 

water retention, conservation agriculture helps resilience to drought. Conservation agriculture practices 

are likely part of the increased resilience of TIST and Neighbor areas to drought. In total, while higher 

resilience of TIST farms cannot be definitively or solely attributed to TIST membership, the practices of 

tree planting, agroforestry, and conservation agriculture likely contribute.  

RQ3: Recovery from subsequent droughts   
The effect of TIST groves on resilience to subsequent drought is positive; however, the number of pixels 

with valid data is very limited and is skewed towards areas with less cloud cover and the area where 

Landsat tiles overlap. Results from Embu and Nyeri will be ignored for the reasons discussed above.  

When considering the landcover comparison, the severity of the droughts is also apparent in the data; 

Meru generally showed less decrease in recovery rates from 59 to 77 because the drought prior to 

Recovery 77 was only one month long, while Tharaka showed decreased recovery rates because the 

prior drought was one year long and included months in the more severe Alarm phase. TIST had a 

significant effect; in Tharaka, the decreases were less severe, and in Meru, recovery rates even 

improved for TIST and Neighbors while Other declined. Subsequent droughts do generally have a more 

detrimental impact and can decrease resilience (Anderegg et al., 2020). Treecover showed the least 

change in resilience overall, which is not surprising given the ability of trees to access deeper water 

sources and improve the soil and microclimate around them (Wallace, 2000; Ludwig et al., 2005). There 

also may be an increasing benefit with time for TIST groves as the trees mature and land has been under 

conservation agriculture practices for longer, which tends to produce more benefits with time (Micheni 

et al., 2016).  

RQ4: TIST spillover effects 
The assumption underpinning the comparison of pixels within 1km of TIST pixels was that these areas 

likely experienced similar agro-ecological conditions as well as drought severity, despite the highly 

varied landscape (Camberlin et al., 2014; Recha, 2018). However, these assumptions may not hold 

across that of that distance, even excluding Nyeri and Embu for the reasons discussed above. When 

looking at the other measured beneficial characteristics (altitude, precipitation, and mean NDVI), there 

are clearly changes with distance from TIST plots (Figure 27). Tharaka shows a more consistent pattern 

of decreasing beneficial characteristics and recovery rates with distance from TIST. Meru shows a more 

mixed pattern. While the mean NDVI, precipitation, and recovery rates follow a similar downward trend 

for Recovery 59, the trends are much less consistent in Recovery 77, such as an increase in altitude 

farther from TIST sites. These differences probably influence some of the decline in recovery rates with 

distance from TIST. These results are also influenced by which pixels had calculated results, which can be 

seen in the differences in median characteristics with distance from TIST plots from one recovery to the 

next in the two counties. This does not mean that there is no TIST effect; TIST groves are greenest and 

recover fastest, followed by immediate neighbors; however, without further analysis, any spillover 

effect in resilience from TIST groves to farther neighboring areas is difficult to isolate.  
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Comparing the change in resilience over time with distance from TIST holds the same caveats as 

discussed above; while TIST and neighbors have an effect on the change in resilience, it is difficult to 

isolate any spillover effect from other factors at play within one kilometer of TIST pixels.  

 

 

Figure 27: Characteristics associated with improved recovery rates and recovery rates plotted vs. distance from closest TIST 
plot. Note that the precipitation data is much lower spatial resolution (5.5 km rather than 30m) and has been resampled 
which is why it appears in steps. Bins are 30m wide, so first point is TIST plots and second point is immediate neighbors.  

Limitations and Future Work  
One limitation is that the recovery rates demonstrate some sensitivity to missing months during the 

recovery period. In instances where a disturbance was detected but no curve could be fit, there were 
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slightly more missing pixels. These missing pixels affected the ability to fit a curve. Even when a curve 

was able to be fit, the rate could be affected by a missing month. For example, the overlap of Landsat 

tiles at the eastern edge of Meru and Tharaka counties is visible in the recovery rates for 59. The pixels 

in the overlap area have much lower recovery rates than those directly next to them which are 

experiencing similar drought conditions. The difference is that pixels in the overlap area have a 

measurement for a month immediately after the local minimum of the disturbance (Figure 28) whereas 

the pixels directly west are missing that month due to cloud contamination. This results in a very steep 

recovery rate fit to the pixels with only one low month of residual. This limitation is due to the slow 

return time of Landsat. While this specific rate calculation issue could be ameliorated by requiring all 12 

months of the recovery period to have valid measurements, that would have resulted in almost no 

pixels being calculated with the greatest reduction being on wetter and cloudier locations (which likely 

have higher recovery rates). 

 
Figure 28: Sensitivity to missing data.  
Left: Landsat tile overlap artefact visible at 
the eastern edge of Tharaka. Map created 
with QGIS. 
Top right: Dark green pixel with high 
recovery rate due to missing month at 
arrow.  
Bottom right: Light green pixel (in overlap 
zone) with lower recovery rate due to 
month present at arrow. 

 

 

 

The sensitivity to missing pixels increases the impact of the inherent sampling bias towards drier pixels 

in this study. Pixels that are greener, wetter, and at higher altitude have a strong correlation with 

missing pixels (Appendix Figure 37), so the pixels that had sufficiently continuous timeseries to calculate 

a recovery rate tend to be in drier places, which tend to have lower recovery rates. As was shown above, 

timeseries with certain months missing can greatly change the calculated rate to be higher; thus, the 

trend of wetter pixels having stronger recoveries may be amplified by higher rates being calculated than 

would otherwise. Additionally, despite masking known cloudy pixels, there may still be cloudy or hazy 
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observations causing a decreased NDVI observation that has no relation to the true state of the agro-

ecological system. This issue could be improved with an NDVI reconstruction algorithm utilizing another 

satellite such as MODIS (e.g., Chen, Y. et al., 2021) to spatially and temporally fill gaps as Sentinel-2 did 

not come online with both satellites until 2017 (ESA, 2023). Additionally, this analysis could also be 

attempted for the 2020-23 drought in Kenya using Sentinel-2’s higher temporal and spatial resolution 

which could result in more continuous timeseries. 

While this study focused on drought, there are other perturbances at play in the landscape during this 

time. For example, human-caused wildfires are not uncommon on Mt. Kenya (Henry et al., 2019). All 

counties in the study area were affected by floods and landslides in 2017-19, including flooding 

specifically Tharaka and Meru in March-May 2018 (Recovery 59) (UNICEF, 2018; Muchui, 2019; Kenya 

Meteorological Department, 2020). There was also a 2019-20 locust infestation (USAID, 2020). These 

could both cause noise in the observations of NDVI and affect the actual resilience and recovery rate of 

the system. Narrowing the recovery estimation to specific time periods as determined by the NDMA 

county classifications likely reduced the probability of estimating recovery from other perturbances 

during the study period except for times of overlap such as Recovery 59; however, this also may have 

missed relevant drought recoveries in pixels with a local minimum outside the designated windows. 

Even though the county-wide classifications of drought were based on surveys of individuals around the 

county as well as measures such as precipitation and vegetation conditions, given the variability within 

agricultural practices and climate conditions, the droughts (and other disasters) no doubt had varying 

severities and different onset and cessation times across the county. If the system disturbances had 

been pinpointed with a generalized method such as using sudden shifts in the data itself as in the 

method used by Smith et al. (2022), disturbance detection would be more specific to each pixel in the 

heterogenous landscape. The recoveries may have been able to be matched to specific drought events 

via the disturbance timestamp. This approach would also lose specificity to drought and detect 

disturbances from other events such as floods but might provide a more complete picture of the 

system’s resilience.  

Additionally, the parameters chosen throughout the methodology (STL decomposition, the threshold for 

valid measurements, the length to search for a minimum, and the initial guesses for curve fitting) have 

some effect on the final recovery rates (Lenton et al., 2022). While all parameters in this study were 

chosen based on a balance of maximizing calculated pixels while minimizing erroneous estimations, this 

was based on testing on a subset of the data. Sensitivity testing with different window sizes and 

parameters would reveal the effect of methodological choices on the result. This is a necessary step to 

increase the robustness of the results.  

Finally, the limitations of drawing conclusions about an area using only remotely sensed data should be 

noted. Remote sensing data cannot speak to several factors that are known to affect vegetation 

resilience, such as which species are present, functional biodiversity, or soil health (Hishe et al., 2021; 

Cavender-Bares et al., 2022). Additionally, the data about TIST farms is limited; there may be additional 

groves that are unmarked, or farms that are marked may no longer be participating. While some groves 

had information about the number of trees planted or the date of establishment, not all groves had that 

information, so it was not utilized. Moreover, the exact agricultural practices used in TIST farms and the 
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surrounding farms cannot be confirmed with NDVI or TIST membership only. Further, the vegetation 

resilience to drought might not reflect the outcomes experienced by the farmers in the study area or the 

resilience of other aspects of the agro-ecosystem. Pairing remote sensing with field measurements 

could improve understanding of the drought severity across the county, or additional data sources such 

as interviews could reveal of the intensity of TIST practices and more detail on resilience of farms and 

surrounding areas.  

7. Conclusion 
Resilience after drought disturbance was estimated for four counties surrounding Mt. Kenya based on 

drought categorizations by the Kenyan National Drought Management Authority. The recovery rates 

were estimated using an exponential fit on the NDVI residuals from Landsat-8 and used as a direct 

measure of resilience. The patterns of resilience matched with existing literature, including higher 

resilience in areas with more water availability and tree cover, and more instances of no disturbance 

observed in semi-arid zones that may be more tolerant of water stress. These results validate the 

method as a useful way to measure resilience to specific disturbances.  

The resilience of TIST groves and neighboring pixels were compared to other pixels to assess whether 

the agroforestry and conservation agriculture practices of TIST participants affect resilience to drought. 

TIST groves and Neighbors generally exhibited faster recoveries than pixels of the same landcover type 

across counties and recoveries. TIST and Neighbors also showed less decrease in resilience to 

subsequent droughts than comparable Other pixels. It was difficult to isolate the spillover effects of TIST 

groves into further neighboring pixels due to the change in other favorable conditions such as 

precipitation, altitude, and general greenness within one kilometer of TIST groves which speaks to the 

heterogeneity of the study area.  

Given the methodological limitations such as sensitivity to missing months and the lack of complete 

timeseries in greener and more tree-covered locations due to cloud contamination, this study could 

provide further conclusions with additional data sources such as combining satellite sources for more 

complete NDVI series, fieldwork to localize drought severity, or information on the extent of TIST 

practices.  

Because of the warming climate and pressures on planetary boundaries, ecosystems globally are 

exhibiting lower resilience while simultaneously the frequency and intensity of disasters like drought are 

increasing. Smallholder farmers are particularly exposed to the risks of climate change. TIST, a 

community-driven tree planting program for carbon credits, economically and environmentally benefits 

participating farmers, and the practices of agroforestry and conservation agriculture have previously 

been found to increase their resilience to climate change. This study supports the TIST program by 

quantifying that participants exhibit higher resilience to drought than comparable areas, and it 

corroborates farmers’ experiential understanding that agroforestry improves drought resilience. By 

assessing the resilience of agro-ecosystems such as the area surrounding Mt. Kenya and identifying 

resilience-increasing management methods such as TIST practices, this study contributes to the concept 

of resilience monitoring systems and supports the use of resilience-building agricultural techniques.  
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8. Code Availability 
Python scripts and utilized packages are available at https://github.com/ml-henderson/TIST. 

Google Earth Engine code for retrieving the landcover, ecoregion, human modification gradient, and 

altitude data is available at: 

https://code.earthengine.google.com/97419690785510dfa3e44271ae7dc88e. 

Map figures were created using QGIS 3.32.0 (QGIS.org, 2023). Recovery rates and correlation plots were 

created with Python. Other graphs were created using TIBCO Spotfire 12.5.0.   

https://github.com/ml-henderson/TIST
https://code.earthengine.google.com/97419690785510dfa3e44271ae7dc88e
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9. Appendix 
Table 3: Drought classifications from the NDMA.  Months with NA had no report available online (NDMA, 2017, 2023). 

Month # Date Meru Tharaka Embu Nyeri 

119 Apr-23 Normal Normal Normal Recovery 

118 Mar-23 Alert Normal Alert Alert 

117 Feb-23 Alert Normal Alert Alert 

116 Jan-23 Alert Normal Alert Alert 

115 Dec-22 Alert Alert Normal Alert 

114 Nov-22 Alert Alert Normal Alert 

113 Oct-22 Alert Alert Alert Alert 

112 Sep-22 Alert Alert Alert Alert 

111 Aug-22 Alert Alarm Alert Alert 

110 Jul-22 Alert Alert Alert Alert 

109 Jun-22 Alert Alarm Alert Alert 

108 May-22 Alert Alert Alert Alert 

107 Apr-22 Alert Recovery Normal Alert 

106 Mar-22 Alert Alert Normal Alert 

105 Feb-22 Alert Alert Normal Alert 

104 Jan-22 Alert Recovery Normal Alert 

103 Dec-21 Alert Alert Alert Alert 

102 Nov-21 Alert Alarm Alert Alert 

101 Oct-21 Alert Alert Alert Alert 

100 Sep-21 Alert Alert Alert Alert 

99 Aug-21 Alert Alert Alert Normal 

98 Jul-21 NA NA NA NA 

97 Jun-21 Normal Normal Normal Normal 

96 May-21 Normal Normal Normal Normal 

95 Apr-21 Normal Normal Normal Normal 

94 Mar-21 Normal Normal Normal Normal 

93 Feb-21 NA NA NA NA 

92 Jan-21 Normal Normal Normal Normal 

91 Dec-20 NA NA NA NA 

90 Nov-20 NA NA NA NA 

89 Oct-20 NA NA NA NA 

88 Sep-20 Normal Normal Normal Normal 

87 Aug-20 Normal Normal Normal Normal 

86 Jul-20 Normal Normal Normal Normal 

85 Jun-20 Normal Normal Normal Normal 

84 May-20 Normal Normal Normal Normal 

83 Apr-20 Normal Normal Normal Normal 

82 Mar-20 Normal Normal Normal Normal 
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81 Feb-20 Normal Normal Normal Normal 

80 Jan-20 Normal Normal Normal Normal 

79 Dec-19 Normal Normal Normal Normal 

78 Nov-19 Normal Recovery Normal Normal 

77 Oct-19 Normal Recovery Normal Normal 

76 Sep-19 Alert Alarm Alarm Alert 

75 Aug-19 Normal Alarm Alert Alert 

74 Jul-19 Normal Alarm Alert Alert 

73 Jun-19 Normal Alert Alert Alert 

72 May-19 Normal Alert Alert Alert 

71 Apr-19 Normal Alert Alert Alert 

70 Mar-19 NA NA NA NA 

69 Feb-19 Normal Alert Alert Alert 

68 Jan-19 Normal Alert Normal Normal 

67 Dec-18 NA NA NA NA 

66 Nov-18 Normal Alert Normal Normal 

65 Oct-18 NA NA NA NA 

64 Sep-18 Normal Normal Normal Normal 

63 Aug-18 NA NA NA NA 

62 Jul-18 Normal Normal Normal Normal 

61 Jun-18 NA NA NA NA 

60 May-18 Normal Normal Normal Normal 

59 Apr-18 Normal Normal Normal Normal 

58 Mar-18 Alert Alert Alert Alert 

57 Feb-18 Alert Alert Alert Normal 

56 Jan-18 Alert Alert Normal Normal 

55 Dec-17 Normal Alert Normal Normal 

54 Nov-17 Normal Alert Normal Normal 

53 Oct-17 Alert Alert Alert Alert 

52 Sep-17 Alert Alert Alert Alert 

51 Aug-17 Alert Alert Alert Alert 

50 Jul-17 Alert Alert Alert Alert 

49 Jun-17 Alert Alert Alert Alert 

48 May-17 Alert Alert Alert Alert 

47 Apr-17 Alert Alert Alert Alert 

46 Mar-17 NA NA NA NA 

45 Feb-17 Alert Alert Normal Alert 

44 Jan-17 NA NA NA NA 

43 Dec-16 Alert Alert Alert Normal 

42 Nov-16 Normal Normal Alert Normal 

41 Oct-16 Alert Normal Normal Normal 

40 Sep-16 Alert Normal Normal Normal 
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Figure 29: Example of attempted gap filling with Savitzy-Golay reconstruction on four pixels, which uses linear gap filling as 
the first step (Chen et al., 2004). Blue points are original data. Red line is linear interpolation of all gaps (no size limit). Green 
stars are smoothed points. Filling gaps longer than seasons (2-3 months in Kenya) may not accurately reconstruct the NDVI 
timeseries, which can be seen by the long periods of reconstructed data with no fluctuations as might normally be expected.  

 

  
Figure 30: The R2 value for the recovery rates vs. the 
difference between the local minimum and the (mean – 
one standard deviation). A positive difference indicates 
that the local minimum found was closer to the mean than 
one standard deviation, while a negative value indicates a 
local minimum farther from the mean than one standard 
deviation. Recovery fitted for 5000 pixels in Tharka county 
for two recoveries (59th month and 77th month). The overall 
trend shows that for pixels with a local minimum closer 
than one standard deviation to the mean, the overall fit of 
the equation is worse, and sometimes even less than zero, 
indicating a nonsensical result from an incorrect model fit. 
This led to the decision to require local minimums to be 
below one standard deviation from the mean.  

Figure 31: The R2 value for the recovery rates vs. the 
difference between the local minimum and the (mean – 
two standard deviations). A positive difference indicates 
that the local minimum found was closer to the mean than 
two standard deviations, while a negative value indicates a 
local minimum farther from the mean than two standard 
deviations. Recovery fitted for 5000 pixels in Tharka county 
for two recoveries (59th month and 77th month). The overall 
trend shows that for one recovery, a threshold below the 
second standard deviation led to better R2 values, while 
the other recovery showed no trend. This led to the 
decision to require local minimums to be below one 
standard deviations from the mean. 
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Figure 32: Histograms of fitted recovery rate for a sample of data (n = 5000, Tharaka county) for different initial guesses of a, 
r, and c. Recovery rate of 10 indicates no convergence. The results are only somewhat sensitive to these initial guesses. The 
eighth set of tested parameters was chosen as a sufficient starting guess for curve fitting.  
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Figure 33: Distance from TIST groves in meters.  
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Table 4: Recovery calculation success rates.  

Number 
of pixels 

Total 
pixels 

Total 
attempted, 
59 

Disturbance 
detected, rate 
calculated, 59  

No disturbance 
detected, 59 

Disturbance 
detected, curve 
could not be fit, 59 

Meru 7,720,270 4,355,850 
(56%) 

3,431,380  
(44% of total,  
79% of attempted) 

843,196 
(11% of total,  
19% of attempted) 

81,274  
(1% of total,  
2% of attempted) 

Tharaka 2,990,072 1,802,477 
(60%) 

1,659,332  
(55% of total,  
92% of attempted) 

132,224 
(4% of total,  
7% of attempted) 

10,921  
(0.4% of total,  
0.6% of attempted) 

Nyeri 3,733,796 1,072,462 
(29%) 

755,417  
(20% of total,  
70% of attempted) 

210,178 
(6% of total, 
20% of attempted) 

106,867  
(3% of total,  
10% of attempted) 

Embu 3,170,195 947,371 
(30%) 

888,370  
(28% of total,  
94% of attempted) 

53,131 
(2% of total,  
6% of attempted) 

5,870  
(0.2% of total,  
0.6% of attempted)  

Total 
pixels 

Total 
attempted, 
77 

Disturbance 
detected, rate 
calculated, 77 

No disturbance 
detected, 77 

Disturbance 
detected, curve 
could not be fit, 77 

Meru 7,720,270 5,413,373 
(70%) 

2,776,504  
(36% of total,  
51% of attempted) 

2,477,926 
(32% of total,  
46% of attempted 

158,953  
(2% of total,  
3% of attempted) 

Tharaka 2,990,072 2,047,445 
(68%) 

1,099,377  
(37% of total,  
54% of attempted) 

870,388 
(29% of total,  
43% of attempted) 

77,680  
(3% of total,  
4% of attempted) 

Nyeri 3,733,796 1,338,556 
(36%) 

790,413  
(21% of total,  
59% of attempted) 

520,975 
(14% of total,  
39% of attempted) 

27,168  
(1% of total,  
2% of attempted) 

Embu 3,170,195 1,326,543 
(42%) 

453,140  
(14% of total,  
34% of attempted) 

830,522 
(26% of total,  
63% of attempted) 

42,881  
(1% of total,  
3% of attempted) 
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Figure 34: Recovery rates and R-squared values for Recovery 59. Bottom histogram of recovery rates has zoomed x-axis to 
show detail; outliers persist up to a rate of approximately 60.   

 

 

 

Figure 35: Recovery rates and R-squared values for Recovery 77. Bottom histogram of recovery rates has zoomed x-axis to 
show detail; outliers persist up to a rate of approximately 60.   
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Figure 36: Mean NDVI in each county for TIST, neighbors, and other pixels. Meru and Tharaka have very similar patterns that 
TIST and neighbors tend to be wetter, greener, and at higher altitude, while Embu has less differences between the groups. 
Nyeri has the opposite trends: TIST and neighbors tend to be drier, less green, and at lower altitudes. Similar distributions 
are seen in yearly average precipitation and altitude.  
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Figure 37: Spearman’s rank correlations for recoveries and other characteristics across counties. All correlations are 
significant, p < 0.001.  

 

 

Figure 38a: Recovery 
rates for 59 by landcover 
type. Trees have the 
highest median recovery 
rates.  
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38b: Recovery rates for 
77 by landcover type.  
Trees have the highest 
median recovery rates.  

 

 

Figure 39a: Recovery 
rates for 59 by ecoregion. 
Forests have the highest 
median recovery rates 
after montane 
moorlands, which are 
mostly ignored in this 
study due to their low 
numbers and irrelevance 
to agricultural areas.   

 

 

39b: Recovery rates for 
77 by ecoregion. Forests 
have the highest median 
recovery rates. 
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Figure 40 : Characteristics of each landcover type with medians marked. Medians are significantly different between each 
landcover type (KWH with PHD, p < 0.001).  

 

Table 5: Sample size corresponding to recovery rates compared by county, recovery and landcover classification.  

Landcover 
class 

Tree cover Shrubland Grassland Cropland 

Recovery 
Period 

59 77 59 77 59 77 59 77 

Tharaka TIST 10,725 7,718 5,339 3,874 1,246 875 6,027 5,699 
 Nbr. 11,318 6,794 6,463 4,270 1,267 887 6,973 6,415 
 Oth. 127,264 100,611 1,028,514 563,916 187,604 143,671 263,324 251,687 

 
Meru TIST 31,274 22,429 13,391 11,262 3,239 2,816 31,745 28,323 
 Nbr. 26,329 17,400 13,240 11,495 4,060 3,634 35,318 32,431 
 Oth. 342,315 449,632 935,687 568,550 837,093 493,271 674,186 594,334 

 
Nyeri TIST 2,798 2,511 6,805 6,244 5,286 5,054 4,779 3,967 
 Nbr. 2,525 2,102 6,599 5,272 7,786 6,834 7,055 5,535 
 Oth. 159,404 246,757 146,113 134,820 228,587 182,764 161,299 118,147 

 
Embu TIST 35 31 756 581 318 288 796 583 
 Nbr. 29 22 851 544 400 300 666 450 
 Oth. 39,797 54,247 605,307 220,931 121,445 67,085 117,255 107,694 
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Table 6: Sample size for percent change in recovery rate from Recovery 59 to Recovery 77, compared by landcover.  

Sample size Tree cover Shrubland Grassland Cropland 

Tharaka TIST 3,411 2,438 635 3,873 
 Neighbor 2,872 2,541 652 4,239 
 Other 40,367 419,856 108,961 174,820 

 
Meru TIST 12,149 5,868 1,809 20,276 
 Neighbor 9,361 5,700 2,195 22,237 
 Other 121,546 283,643 246,299 349,124 

 
Nyeri TIST 1,285 3,414 2,892 2,225 
 Neighbor 1,176 3,028 4,051 3,200 
 Other 72,158 75,673 114,309 71,624 

 
Embu TIST 7 264 88 256 
 Neighbor 3 227 65 189 
 Other 6,777 85,098 29,641 34,719 
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